
Largus Angenent

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7266890/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Succession of microbial consortia in the developing infant gut microbiome. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4578-4585.	3.3	2,108
2	A communal catalogue reveals Earth's multiscale microbial diversity. Nature, 2017, 551, 457-463.	13.7	1,942
3	Host Remodeling of the Gut Microbiome and Metabolic Changes during Pregnancy. Cell, 2012, 150, 470-480.	13.5	1,603
4	Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends in Biotechnology, 2004, 22, 477-485.	4.9	856
5	Electricity Generation from Artificial Wastewater Using an Upflow Microbial Fuel Cell. Environmental Science & Technology, 2005, 39, 5262-5267.	4.6	680
6	Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends in Biotechnology, 2011, 29, 70-78.	4.9	660
7	Impact of training sets on classification of high-throughput bacterial 16s rRNA gene surveys. ISME Journal, 2012, 6, 94-103.	4.4	537
8	Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?. Bioresource Technology, 2011, 102, 324-333.	4.8	494
9	Application of Bacterial Biocathodes in Microbial Fuel Cells. Electroanalysis, 2006, 18, 2009-2015.	1.5	493
10	Biochemical methane potential and biodegradability of complex organic substrates. Bioresource Technology, 2011, 102, 2255-2264.	4.8	461
11	An Upflow Microbial Fuel Cell with an Interior Cathode:Â Assessment of the Internal Resistance by Impedance Spectroscopyâ€. Environmental Science & Technology, 2006, 40, 5212-5217.	4.6	442
12	Chain Elongation with Reactor Microbiomes: Open-Culture Biotechnology To Produce Biochemicals. Environmental Science & Technology, 2016, 50, 2796-2810.	4.6	426
13	Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4158-4163.	3.3	412
14	Microbial electrochemistry and technology: terminology and classification. Energy and Environmental Science, 2015, 8, 513-519.	15.6	397
15	Rapid electron transfer by the carbon matrix in natural pyrogenic carbon. Nature Communications, 2017, 8, 14873.	5.8	385
16	Getting a grip on things: how do communities of bacterial symbionts become established in our intestine?. Nature Immunology, 2004, 5, 569-573.	7.0	342
17	Chain elongation in anaerobic reactor microbiomes to recover resources from waste. Current Opinion in Biotechnology, 2014, 27, 115-122.	3.3	322
18	Innate and Adaptive Immunity Interact to Quench Microbiome Flagellar Motility in the Gut. Cell Host and Microbe, 2013, 14, 571-581.	5.1	321

#	Article	IF	CITATIONS
19	Light energy to bioelectricity: photosynthetic microbial fuel cells. Current Opinion in Biotechnology, 2010, 21, 259-264.	3.3	314
20	Chain elongation with reactor microbiomes: upgrading dilute ethanol to medium-chain carboxylates. Energy and Environmental Science, 2012, 5, 8189.	15.6	290
21	Anaerobic fermentation for n-caproic acid production: A review. Process Biochemistry, 2017, 54, 106-119.	1.8	237
22	Conventional mesophilic vs. thermophilic anaerobic digestion: AÂtrade-off between performance and stability?. Water Research, 2014, 53, 249-258.	5.3	226
23	Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Research, 2002, 36, 4648-4654.	5.3	221
24	Molecular identification of potential pathogens in water and air of a hospital therapy pool. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4860-4865.	3.3	210
25	Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosensors and Bioelectronics, 2007, 22, 3252-3255.	5.3	206
26	Conversion of l-lactate into n-caproate by a continuously fed reactor microbiome. Water Research, 2016, 93, 163-171.	5.3	196
27	Long-Term <i>n</i> -Caproic Acid Production from Yeast-Fermentation Beer in an Anaerobic Bioreactor with Continuous Product Extraction. Environmental Science & Technology, 2015, 49, 8012-8021.	4.6	195
28	Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. Journal of Applied Microbiology, 2005, 99, 1422-1434.	1.4	185
29	Self-Sustained Phototrophic Microbial Fuel Cells Based on the Synergistic Cooperation between Photosynthetic Microorganisms and Heterotrophic Bacteria. Environmental Science & Technology, 2009, 43, 1648-1654.	4.6	176
30	Electric Power Generation from Municipal, Food, and Animal Wastewaters Using Microbial Fuel Cells. Electroanalysis, 2010, 22, 832-843.	1.5	173
31	Extracellular Electron Uptake: Among Autotrophs and Mediated by Surfaces. Trends in Biotechnology, 2017, 35, 360-371.	4.9	163
32	High n-caprylate productivities and specificities from dilute ethanol and acetate: chain elongation with microbiomes to upgrade products from syngas fermentation. Energy and Environmental Science, 2016, 9, 3482-3494.	15.6	157
33	Effect of shear on performance and microbial ecology of continuously stirred anaerobic digesters treating animal manure. Biotechnology and Bioengineering, 2008, 100, 38-48.	1.7	147
34	Coupling hydrothermal liquefaction and anaerobic digestion for energy valorization from model biomass feedstocks. Bioresource Technology, 2017, 233, 134-143.	4.8	146
35	Ethanol production in syngas-fermenting Clostridium ljungdahlii is controlled by thermodynamics rather than by enzyme expression. Energy and Environmental Science, 2016, 9, 2392-2399.	15.6	143
36	An arsenic-specific biosensor with genetically engineered Shewanella oneidensis in a bioelectrochemical system. Biosensors and Bioelectronics, 2014, 62, 320-324.	5.3	141

#	Article	IF	CITATIONS
37	Carbon recovery by fermentation of CO-rich off gases – Turning steel mills into biorefineries. Bioresource Technology, 2016, 215, 386-396.	4.8	141
38	Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel, 2014, 117, 742-748.	3.4	137
39	Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment. Bioresource Technology, 2014, 174, 306-310.	4.8	137
40	A Two-Stage Continuous Fermentation System for Conversion of Syngas into Ethanol. Energies, 2013, 6, 3987-4000.	1.6	136
41	Temperature-Phased Conversion of Acid Whey Waste Into Medium-Chain Carboxylic Acids via Lactic Acid: No External e-Donor. Joule, 2018, 2, 280-295.	11.7	132
42	A Narrow pH Range Supports Butanol, Hexanol, and Octanol Production from Syngas in a Continuous Co-culture of Clostridium ljungdahlii and Clostridium kluyveri with In-Line Product Extraction. Frontiers in Microbiology, 2016, 7, 1773.	1.5	131
43	Molecular Analysis of Shower Curtain Biofilm Microbes. Applied and Environmental Microbiology, 2004, 70, 4187-4192.	1.4	128
44	Upgrading dilute ethanol from syngas fermentation to n-caproate with reactor microbiomes. Bioresource Technology, 2014, 151, 378-382.	4.8	127
45	Development of anaerobic migrating blanket reactor (AMBR), a novel anaerobic treatment system. Water Research, 2001, 35, 1739-1747.	5.3	126
46	Production of drop-in fuels from biomass at high selectivity by combined microbial and electrochemical conversion. Energy and Environmental Science, 2017, 10, 2231-2244.	15.6	126
47	Quorum sensing regulates electric current generation of Pseudomonas aeruginosa PA14 in bioelectrochemical systems. Electrochemistry Communications, 2010, 12, 459-462.	2.3	123
48	Microbial Community Dynamics and Stability during an Ammonia-Induced Shift to Syntrophic Acetate Oxidation. Applied and Environmental Microbiology, 2014, 80, 3375-3383.	1.4	118
49	In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis. Chemical Communications, 2015, 51, 6847-6850.	2.2	117
50	Bacteria-based AND logic gate: a decision-making and self-powered biosensor. Chemical Communications, 2011, 47, 3060.	2.2	115
51	A Single-Culture Bioprocess of <i>Methanothermobacter thermautotrophicus</i> to Upgrade Digester Biogas by CO _{2} -to-CH _{4} Conversion with H _{2} . Archaea, 2013, 2013, 1-11.	2.3	112
52	Metabolite-based mutualism between Pseudomonas aeruginosa PA14 and Enterobacter aerogenes enhances current generation in bioelectrochemical systems. Energy and Environmental Science, 2011, 4, 4550.	15.6	109
53	Waste Conversion into n-Caprylate and n-Caproate: Resource Recovery from Wine Lees Using Anaerobic Reactor Microbiomes and In-line Extraction. Frontiers in Microbiology, 2016, 7, 1892.	1.5	108
54	Biocatalytic reduction of shortâ€chain carboxylic acids into their corresponding alcohols with syngas fermentation. Biotechnology and Bioengineering, 2013, 110, 1066-1077.	1.7	107

#	Article	IF	CITATIONS
55	Comparison of Illumina paired-end and single-direction sequencing for microbial 16S rRNA gene amplicon surveys. ISME Journal, 2012, 6, 1273-1276.	4.4	102
56	Traits of selected <i>Clostridium</i> strains for syngas fermentation to ethanol. Biotechnology and Bioengineering, 2016, 113, 531-539.	1.7	97
57	Carbon Dioxide Addition to Microbial Fuel Cell Cathodes Maintains Sustainable Catholyte pH and Improves Anolyte pH, Alkalinity, and Conductivity. Environmental Science & Technology, 2010, 44, 2728-2734.	4.6	95
58	Simultaneous Quantification of Electron Transfer by Carbon Matrices and Functional Groups in Pyrogenic Carbon. Environmental Science & Technology, 2018, 52, 8538-8547.	4.6	95
59	Upgrading syngas fermentation effluent using Clostridium kluyveri in a continuous fermentation. Biotechnology for Biofuels, 2017, 10, 83.	6.2	94
60	Metabolite transfer with the fermentation product 2,3-butanediol enhances virulence by <i>Pseudomonas aeruginosa</i> . ISME Journal, 2014, 8, 1210-1220.	4.4	93
61	Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants. Bioresource Technology, 2016, 218, 1237-1245.	4.8	86
62	A Portable Anaerobic Microbioreactor Reveals Optimum Growth Conditions for the Methanogen Methanosaeta concilii. Applied and Environmental Microbiology, 2007, 73, 1653-1658.	1.4	83
63	Thermophilic Anaerobic Digestion to Increase the Net Energy Balance of Corn Grain Ethanol. Environmental Science & Technology, 2008, 42, 6723-6729.	4.6	83
64	Tuning Promoter Strengths for Improved Synthesis and Function of Electron Conduits in <i>Escherichia coli</i> . ACS Synthetic Biology, 2013, 2, 150-159.	1.9	83
65	Shewanella oneidensis in a lactate-fed pure-culture and a glucose-fed co-culture with Lactococcus lactis with an electrode as electron acceptor. Bioresource Technology, 2011, 102, 2623-2628.	4.8	81
66	Inoculum selection influences the biochemical methane potential of agroâ€industrial substrates. Microbial Biotechnology, 2015, 8, 776-786.	2.0	81
67	Aerated <i>Shewanella oneidensis</i> in continuously fed bioelectrochemical systems for power and hydrogen production. Biotechnology and Bioengineering, 2010, 105, 880-888.	1.7	79
68	Interaction between temperature and ammonia in mesophilic digesters for animal waste treatment. Water Research, 2009, 43, 2373-2382.	5.3	78
69	Power-to-protein: converting renewable electric power and carbon dioxide into single cell protein with a two-stage bioprocess. Energy and Environmental Science, 2019, 12, 3515-3521.	15.6	77
70	Syntrophy via Interspecies H ₂ Transfer between <i>Christensenella</i> and <i>Methanobrevibacter</i> Underlies Their Global Cooccurrence in the Human Gut. MBio, 2020, 11, .	1.8	73
71	Development of a highly specific and productive process for n-caproic acid production: applying lessons from methanogenic microbiomes. Water Science and Technology, 2014, 69, 62-68.	1.2	71
72	Airborne Virus Capture and Inactivation by an Electrostatic Particle Collector. Environmental Science & Technology, 2009, 43, 5940-5946.	4.6	70

#	Article	IF	CITATIONS
73	Microbial Fuel Cell Performance with a Pressurized Cathode Chamber. Environmental Science & Technology, 2008, 42, 8578-8584.	4.6	69
74	Substrate type drives variation in reactor microbiomes of anaerobic digesters. Bioresource Technology, 2014, 151, 397-401.	4.8	68
75	Endotracheal tube biofilm inoculation of oral flora and subsequent colonization of opportunistic pathogens. International Journal of Medical Microbiology, 2010, 300, 503-511.	1.5	67
76	A biogeochemical–hydrological framework for the role of redox-active compounds in aquatic systems. Nature Geoscience, 2021, 14, 264-272.	5.4	67
77	Methane suppression by iron and humic acids in soils of the Arctic Coastal Plain. Soil Biology and Biochemistry, 2015, 83, 176-183.	4.2	65
78	Higher Substrate Ratios of Ethanol to Acetate Steered Chain Elongation toward <i>n</i> -Caprylate in a Bioreactor with Product Extraction. Environmental Science & Technology, 2018, 52, 13438-13447.	4.6	65
79	Overcoming the energetic limitations of syngas fermentation. Current Opinion in Chemical Biology, 2017, 41, 84-92.	2.8	61
80	Effect of the presence of the antimicrobial tylosin in swine waste on anaerobic treatment. Water Research, 2008, 42, 2377-2384.	5.3	60
81	Potentially Pathogenic Bacteria in Shower Water and Air of a Stem Cell Transplant Unit. Applied and Environmental Microbiology, 2009, 75, 5363-5372.	1.4	59
82	Prolonged conversion of <i>n</i> â€butyrate to <i>n</i> â€butanol with <i>Clostridium saccharoperbutylacetonicum</i> in a twoâ€stage continuous culture with inâ€situ product removal. Biotechnology and Bioengineering, 2012, 109, 913-921.	1.7	59
83	Biofuels from Pyrolysis in Perspective: Trade-offs between Energy Yields and Soil-Carbon Additions. Environmental Science & Technology, 2014, 48, 6492-6499.	4.6	58
84	Aggregation-dependent electron transfer via redox-active biochar particles stimulate microbial ferrihydrite reduction. Science of the Total Environment, 2020, 703, 135515.	3.9	57
85	Transcriptional Analysis of Shewanella oneidensis MR-1 with an Electrode Compared to Fe(III)Citrate or Oxygen as Terminal Electron Acceptor. PLoS ONE, 2012, 7, e30827.	1.1	56
86	Monitoring granule formation in anaerobic upflow bioreactors using oligonucleotide hybridization probes. Biotechnology and Bioengineering, 2006, 94, 458-472.	1.7	55
87	Shaping Reactor Microbiomes to Produce the Fuel Precursor <i>n-</i> Butyrate from Pretreated Cellulosic Hydrolysates. Environmental Science & Technology, 2012, 46, 10229-10238.	4.6	55
88	Comparing the inhibitory thresholds of dairy manure co-digesters after prolonged acclimation periods: Part 1 – Performance and operating limits. Water Research, 2015, 87, 446-457.	5.3	52
89	A cost-effective and field-ready potentiostat that poises subsurface electrodes to monitor bacterial respiration. Biosensors and Bioelectronics, 2012, 32, 309-313.	5.3	49
90	Oxygen allows <i>Shewanella oneidensis</i> MRâ€1 to overcome mediator washout in a continuously fed bioelectrochemical system. Biotechnology and Bioengineering, 2014, 111, 692-699.	1.7	49

#	Article	IF	CITATIONS
91	Integrating electrochemical, biological, physical, and thermochemical process units to expand the applicability of anaerobic digestion. Bioresource Technology, 2018, 247, 1085-1094.	4.8	49
92	AQDS and Redox-Active NOM Enables Microbial Fe(III)-Mineral Reduction at cm-Scales. Environmental Science & Technology, 2020, 54, 4131-4139.	4.6	49
93	Anaerobic Migrating Blanket Reactor Treatment of Low-Strength Wastewater at Low Temperatures. Water Environment Research, 2001, 73, 567-574.	1.3	48
94	Production of medium-chain carboxylic acids by anaerobic fermentation of glycerol using a bioaugmented open culture. Biomass and Bioenergy, 2018, 118, 1-7.	2.9	46
95	Formation of granules and Methanosaeta fibres in an anaerobic migrating blanket reactor (AMBR). Environmental Microbiology, 2004, 6, 315-322.	1.8	45
96	Microbial diversity and dynamics in multi- and single-compartment anaerobic bioreactors processing sulfate-rich waste streams. Environmental Microbiology, 2007, 9, 93-106.	1.8	45
97	Bacteria-based biocomputing with Cellular Computing Circuits to sense, decide, signal, and act. Energy and Environmental Science, 2011, 4, 4907.	15.6	43
98	Power-to-Protein: Carbon Fixation with Renewable Electric Power to Feed the World. Joule, 2020, 4, 1142-1147.	11.7	43
99	Oxidizing Electrode Potentials Decrease Current Production and Coulombic Efficiency through Cytochromeâ€ <i>c</i> Inactivation in <i>Shewanella oneidensis</i> MRâ€1. ChemElectroChem, 2014, 1, 2000-2006.	1.7	41
100	A Laminarâ€Flow Microfluidic Device for Quantitative Analysis of Microbial Electrochemical Activity. ChemSusChem, 2012, 5, 1119-1123.	3.6	40
101	Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling. Journal of Dairy Science, 2015, 98, 5252-5261.	1.4	37
102	Stacked optical waveguide photobioreactor for high density algal cultures. Bioresource Technology, 2014, 171, 495-499.	4.8	36
103	Toward Electrosynthesis with Uncoupled Extracellular Electron Uptake and Metabolic Growth: Enhancing Current Uptake with <i>Rhodopseudomonas palustris</i> . Environmental Science and Technology Letters, 2014, 1, 351-355.	3.9	36
104	Performance of electro-spun carbon nanofiber electrodes with conductive poly(3,4-ethylenedioxythiophene) coatings in bioelectrochemical systems. Journal of Power Sources, 2017, 356, 331-337.	4.0	36
105	Production and extraction of medium chain carboxylic acids at a semi-pilot scale. Chemical Engineering Journal, 2021, 416, 127886.	6.6	36
106	Slab waveguide photobioreactors for microalgae based biofuel production. Lab on A Chip, 2012, 12, 3740.	3.1	35
107	An evaluation of anaerobic co-digestion implementation on New York State dairy farms using an environmental and economic life-cycle framework. Applied Energy, 2018, 211, 28-40.	5.1	34
108	Electron Hopping Enables Rapid Electron Transfer between Quinone-/Hydroquinone-Containing Organic Molecules in Microbial Iron(III) Mineral Reduction. Environmental Science & Technology, 2020, 54, 10646-10653.	4.6	34

#	Article	IF	CITATIONS
109	Nitrate Feed Improves Growth and Ethanol Production of Clostridium ljungdahlii With CO2 and H2, but Results in Stochastic Inhibition Events. Frontiers in Microbiology, 2020, 11, 724.	1.5	34
110	Anaerobic digestion of secondary residuals from an anaerobic bioreactor at a brewery to enhance bioenergy generation. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 321-329.	1.4	33
111	Comparing the inhibitory thresholds of dairy manure co-digesters after prolonged acclimation periods: Part 2 – correlations between microbiomes and environment. Water Research, 2015, 87, 458-466.	5.3	33
112	Pigment-targeted light wavelength and intensity promotes efficient photoautotrophic growth of Cyanobacteria. Bioresource Technology, 2016, 216, 579-586.	4.8	33
113	The Isolate Caproiciproducens sp. 7D4C2 Produces n-Caproate at Mildly Acidic Conditions From Hexoses: Genome and rBOX Comparison With Related Strains and Chain-Elongating Bacteria. Frontiers in Microbiology, 2020, 11, 594524.	1.5	33
114	Microbial Community Structure and Activity in a Compartmentalized, Anaerobic Bioreactor. Water Environment Research, 2002, 74, 450-461.	1.3	31
115	Potential pathogenic bacteria in metalworking fluids and aerosols from a machining facility. FEMS Microbiology Ecology, 2010, 74, 643-654.	1.3	31
116	Integrating syngas fermentation with the carboxylate platform and yeast fermentation to reduce medium cost and improve biofuel productivity. Environmental Technology (United Kingdom), 2013, 34, 1983-1994.	1.2	30
117	Reprogramming Acetogenic Bacteria with CRISPR-Targeted Base Editing <i>via</i> Deamination. ACS Synthetic Biology, 2020, 9, 2162-2171.	1.9	30
118	Anaerobic digestion of brewery primary sludge to enhance bioenergy generation: A comparison between low- and high-rate solids treatment and different temperatures. Bioresource Technology, 2010, 101, 5842-5851.	4.8	28
119	Techno-economic analysis of a conceptual biofuel production process from bioethylene produced by photosynthetic recombinant cyanobacteria. Green Chemistry, 2016, 18, 6266-6281.	4.6	28
120	Redundancy in Anaerobic Digestion Microbiomes during Disturbances by the Antibiotic Monensin. Applied and Environmental Microbiology, 2018, 84, .	1.4	28
121	Characterization of microbial trophic structures of two anaerobic bioreactors processing sulfate-rich waste streams. Water Research, 2009, 43, 4451-4460.	5.3	27
122	The fermentation product 2,3-butanediol alters <i>P. aeruginosa</i> clearance, cytokine response and the lung microbiome. ISME Journal, 2016, 10, 2978-2983.	4.4	27
123	Stochasticity in microbiology: managing unpredictability to reach the Sustainable Development Goals. Microbial Biotechnology, 2020, 13, 829-843.	2.0	26
124	Microbial electrocatalysis to guide biofuel and biochemical bioprocessing. Biofuels, 2013, 4, 131-134.	1.4	24
125	Electrolysis within anaerobic bioreactors stimulates breakdown of toxic products from azo dye treatment. Biodegradation, 2015, 26, 151-160.	1.5	24
126	Oxygen Tension and Riboflavin Gradients Cooperatively Regulate the Migration of Shewanella oneidensis MR-1 Revealed by a Hydrogel-Based Microfluidic Device. Frontiers in Microbiology, 2016, 7, 1438.	1.5	24

#	Article	IF	CITATIONS
127	Regulated expression of polysaccharide utilization and capsular biosynthesis loci in biofilm and planktonic <i>Bacteroides thetaiotaomicron</i> during growth in chemostats. Biotechnology and Bioengineering, 2014, 111, 165-173.	1.7	23
128	Optimizing Mixed-Culture Bioprocessing To Convert Wastes into Bioenergy. , 0, , 179-194.		23
129	Effect of an Organic Shock Load on the Stability of an Anaerobic Migrating Blanket Reactor. Journal of Environmental Engineering, ASCE, 2002, 128, 1109-1120.	0.7	22
130	Biotests for hazard assessment of biofuel fermentation. Energy and Environmental Science, 2012, 5, 9778.	15.6	22
131	Metabolic engineering of Rhodopseudomonas palustris for the obligate reduction of n-butyrate to n-butanol. Biotechnology for Biofuels, 2017, 10, 178.	6.2	22
132	Upgrading sugarcane biorefineries: Acetate addition allows for conversion of fermented sugarcane molasses into high-value medium chain carboxylic acids. Journal of Environmental Chemical Engineering, 2020, 8, 103649.	3.3	22
133	Direct Medium-Chain Carboxylic Acid Oil Separation from a Bioreactor by an Electrodialysis/Phase Separation Cell. Environmental Science & Technology, 2021, 55, 634-644.	4.6	22
134	Systematic Analysis of Factors That Affect Food-Waste Storage: Toward Maximizing Lactate Accumulation for Resource Recovery. ACS Sustainable Chemistry and Engineering, 2020, 8, 13934-13944.	3.2	21
135	Suppressing peatland methane production by electron snorkeling through pyrogenic carbon in controlled laboratory incubations. Nature Communications, 2021, 12, 4119.	5.8	21
136	Optimal Intensity and Biomass Density for Biofuel Production in a Thin-Light-Path Photobioreactor. Environmental Science & Technology, 2015, 49, 6327-6334.	4.6	20
137	Inactivation of <i>Ascaris</i> Eggs in Human Fecal Material Through In Situ Production of Carboxylic Acids. Environmental Science & Technology, 2017, 51, 9729-9738.	4.6	20
138	A Shuttle-Vector System Allows Heterologous Gene Expression in the Thermophilic Methanogen Methanothermobacter thermautotrophicus ΔH. MBio, 2021, 12, e0276621.	1.8	20
139	An openâ€source biomass pyrolysis reactor. Biofuels, Bioproducts and Biorefining, 2017, 11, 945-954.	1.9	19
140	A coupled function of biochar as geobattery and geoconductor leads to stimulation of microbial Fe(III) reduction and methanogenesis in a paddy soil enrichment culture. Soil Biology and Biochemistry, 2021, 163, 108446.	4.2	19
141	Integrating anaerobic digestion, hydrothermal liquefaction, and biomethanation within a power-to-gas framework for dairy waste management and grid decarbonization: a techno-economic assessment. Sustainable Energy and Fuels, 2020, 4, 4644-4661.	2.5	18
142	A rapid reverse transcription-PCR assay for F+ RNA coliphages to trace fecal pollution in Table Rock Lake on the Arkansas–Missouri border. Water Research, 2006, 40, 3719-3724.	5.3	16
143	Modularized production of fuels and other valueâ€added products from distributed, wasted, or stranded feedstocks. Wiley Interdisciplinary Reviews: Energy and Environment, 2018, 7, e308.	1.9	16
144	Recycling carbon for sustainable protein production using gas fermentation. Current Opinion in Biotechnology, 2022, 76, 102723.	3.3	16

#	Article	IF	CITATIONS
145	Improved Design of Anaerobic Digesters for Household Biogas Production in Indonesia: One Cow, One Digester, and One Hour of Cooking per Day. Scientific World Journal, The, 2014, 2014, 1-8.	0.8	15
146	Harnessing anaerobic digestion for combined cooling, heat, and power on dairy farms: An environmental life cycle and techno-economic assessment of added cooling pathways. Journal of Dairy Science, 2019, 102, 3630-3645.	1.4	15
147	Effects of Ceiling-Mounted HEPA-UV Air Filters on Airborne Bacteria Concentrations in an Indoor Therapy Pool Building. Journal of the Air and Waste Management Association, 2005, 55, 210-218.	0.9	14
148	Comparative 16S rRNA gene surveys of granular sludge from three upflow anaerobic bioreactors treating purified terephthalic acid (PTA) wastewater. Water Science and Technology, 2011, 64, 1406-1412.	1.2	14
149	Integrated hollow fiber membranes for gas delivery into optical waveguide based photobioreactors. Bioresource Technology, 2015, 192, 845-849.	4.8	13
150	Novel Rhizosphere Soil Alleles for the Enzyme 1-Aminocyclopropane-1-Carboxylate Deaminase Queried for Function with an <i>In Vivo</i> Competition Assay. Applied and Environmental Microbiology, 2016, 82, 1050-1059.	1.4	13
151	Near-neutral pH increased n-caprylate production in a microbiome with product inhibition of methanogenesis. Chemical Engineering Journal, 2022, 446, 137170.	6.6	13
152	Methane Emission in a Specific Riparian-Zone Sediment Decreased with Bioelectrochemical Manipulation and Corresponded to the Microbial Community Dynamics. Frontiers in Microbiology, 2015, 6, 1523.	1.5	12
153	Methanosaeta fibers in anaerobic migrating blanket reactors. Water Science and Technology, 2000, 41, 35-39.	1.2	11
154	Continuously-stirred Anaerobic Digester to Convert Organic Wastes into Biogas: System Setup and Basic Operation. Journal of Visualized Experiments, 2012, , e3978.	0.2	11
155	Optimal <scp>pH</scp> set point for simultaneous production and pertraction of <i>n</i> â€caproic acid: an experimental and simulation study. Journal of Chemical Technology and Biotechnology, 2020, 95, 3105-3116.	1.6	11
156	Potentiostatically Poised Electrodes Mimic Iron Oxide and Interact with Soil Microbial Communities to Alter the Biogeochemistry of Arctic Peat Soils. Minerals (Basel, Switzerland), 2013, 3, 318-336.	0.8	10
157	Development of a Bioelectrochemical System as a Tool to Enrich H2-Producing Syntrophic Bacteria. Frontiers in Microbiology, 2019, 10, 110.	1.5	10
158	In situ hollow fiber membrane facilitated CO2 delivery to a cyanobacterium for enhanced productivity. RSC Advances, 2013, 3, 13203.	1.7	9
159	Granular sludge is a preferable inoculum for the biochemical methane potential assay for two complex substrates. Bioresource Technology, 2020, 309, 123359.	4.8	9
160	The Measurement, Application, and Effect of Oxygen in Microbial Fermentations: Focusing on Methane and Carboxylate Production. Fermentation, 2022, 8, 138.	1.4	9
161	Hollow fibre membrane arrays for CO ₂ delivery in microalgae photobioreactors. RSC Advances, 2014, 4, 1460-1468.	1.7	8
162	Controlled experiment contradicts the apparent benefits of the Fenton reaction during anaerobic digestion at a municipal wastewater treatment plant. Water Science and Technology, 2018, 78, 1861-1870.	1.2	7

#	Article	IF	CITATIONS
163	Sustainable district energy integrating biomass peaking with geothermal baseload heating: A case study of decarbonizing Cornell's energy system. Journal of Renewable and Sustainable Energy, 2020, 12, .	0.8	7
164	Long-Term Continuous Extraction of Medium-Chain Carboxylates by Pertraction With Submerged Hollow-Fiber Membranes. Frontiers in Bioengineering and Biotechnology, 2021, 9, 726946.	2.0	7
165	Comparison of semi-batch vs. continuously fed anaerobic bioreactors for the treatment of a high-strength, solids-rich pumpkin-processing wastewater. Environmental Technology (United) Tj ETQq1 1 0.7843	31 14 2rgBT	/Oøerlock 10
166	Current time-temperature relationships for thermal inactivation of Ascaris eggs at mesophilic temperatures are too conservative and may hamper development of simple, but effective sanitation. Water Research X, 2019, 5, 100036.	2.8	4
167	Shaping a reactor microbiome generating stable n-caproate productivity through Design-Build-Test-Learn approach. Chemical Engineering Journal, 2021, 425, 131587.	6.6	4
168	Editorial: Microbial Chain Elongation- Close the Carbon Loop by Connecting-Communities. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
169	Comments on "Electricity generation by Enterobacter cloacae SU-1 in mediator less microbial fuel cell―by Samrot etÂal., Int.AJ. Hydrogen Energy, 35 (15) 2010, 7723–7729. International Journal of Hydrogen Energy, 2011, 36, 9396-9397.	3.8	3
170	In Situ UV Disinfection of a Waveguide-Based Photobioreactor. Environmental Science & Technology, 2014, 48, 11521-11526.	4.6	3
171	Eco-Mimicry Opens New Doors for Bioprocess Engineers. Joule, 2020, 4, 2074-2077.	11.7	3
172	Molecular Methods in Biological Systems. Water Environment Research, 2007, 79, 1109-1151.	1.3	2
173	Evaluation of chemical indicators for tracking and apportionment of phosphorus sources to Table Rock Lake in Southwest Missouri, USA. Water Research, 2007, 41, 1525-1533.	5.3	2
174	Single-Genotype Syntrophy by Rhodopseudomonas palustris Is Not a Strategy to Aid Redox Balance during Anaerobic Degradation of Lignin Monomers. Frontiers in Microbiology, 2016, 7, 1082.	1.5	2
175	Field-Scale Co-fermentation of Solid Waste From Urine-Diverting Dry Toilets (UDDT-SW) and Banana Waste to Produce Undissociated Carboxylic Acids to Inactivate Ascaris Eggs. Frontiers in Environmental Science, 2019, 7, .	1.5	2
176	The short-term effect of residential home energy retrofits on indoor air quality and microbial exposure: A case-control study. PLoS ONE, 2021, 16, e0230700.	1.1	2
177	Genetic Evidence Reveals the Indispensable Role of the rseC Gene for Autotrophy and the Importance of a Functional Electron Balance for Nitrate Reduction in Clostridium ljungdahlii. Frontiers in Microbiology, 2022, 13, .	1.5	2
178	Characterizing the influence of wastewater composition and lignin content on anaerobic biodegradability. Environmental Science: Water Research and Technology, 0, , .	1.2	2
179	PSYCHROPHILIC ANAEROBIC PRETREATMENT OF LOW-STRENGTH WASTEWATER USING THE ANAEROBIC MIGRATING BLANKET REACTOR. Proceedings of the Water Environment Federation, 2000, 2000, 746-763.	0.0	1
180	Production of gaseous or liquid value-added products in bioelectrochemical systems. Journal of Biotechnology, 2010, 150, 179-179.	1.9	1

#	Article	IF	CITATIONS
181	Recent Advances in Microbial Electrochemical Technologies (Topical Issue EU-ISMET 2016). Fuel Cells, 2017, 17, 582-583.	1.5	1
182	Two-Phase Bioconversion of Greek-Yogurt Waste Into Medium-Chain Carboxylic Acid Oil <i>via</i> Lactic Acid Without External Electron Donor Addition. SSRN Electronic Journal, 0, , .	0.4	1
183	MONITORING ANTIBIOTIC RESISTANCE IN BIOLOGICAL WASTE TREATMENT SYSTEMS. Proceedings of the Water Environment Federation, 2001, 2001, 740-754.	0.0	0
184	Molecular Methods in Biological Systems. Water Environment Research, 2003, 75, 65-139.	1.3	0
185	Molecular Methods in Biological Systems. Water Environment Research, 2004, 76, 605-667.	1.3	0
186	Molecular Methods in Biological Systems. Water Environment Research, 2005, 77, 718-779.	1.3	0
187	Molecular Methods in Biological Systems. Water Environment Research, 2006, 78, 1084-1118.	1.3	0
188	Novel Approach in Algae Biofuel Production using Advanced Photonics. , 2012, , .		0
189	Corrigendum to "Production and physiological responses of heat-stressed lactating dairy cattle to conductive cooling―(J. Dairy Sci. 98:5252–5261). Journal of Dairy Science, 2015, 98, 9060.	1.4	0
190	Cover Image, Volume 11, Issue 6. Biofuels, Bioproducts and Biorefining, 2017, 11, i-i.	1.9	0
191	Enzymatic and Microbial Electrochemical Systems. , 2010, , 1-5.		0
192	The Carboxylate Platform: Conversion of Carbon-rich Wastes into Liquid Fuels and Chemicals. Proceedings of the Water Environment Federation, 2015, 2015, 3067-3067.	0.0	0