
Bart A Eijkelkamp

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7266745/publications.pdf Version: 2024-02-01

RADT A FUKELKAMD

#	Article	IF	CITATIONS
1	Bacterial adaptation strategies to host-derived fatty acids. Trends in Microbiology, 2022, 30, 241-253.	3.5	24
2	Dysregulation of Streptococcus pneumoniae zinc homeostasis breaks ampicillin resistance in a pneumonia infection model. Cell Reports, 2022, 38, 110202.	2.9	18
3	Detection of a disulphide bond and conformational changes in Shigella flexneri Wzy, and the role of cysteine residues in polymerase activity. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183871.	1.4	5
4	Dynamics of the Acinetobacter baumannii inner membrane under exogenous polyunsaturated fatty acid stress. Biochimica Et Biophysica Acta - Biomembranes, 2022, 1864, 183908.	1.4	3
5	Physiological Functions of Bacterial "Multidrug―Efflux Pumps. Chemical Reviews, 2021, 121, 5417-5478.	23.0	78
6	Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases. Scientific Reports, 2021, 11, 7050.	1.6	9
7	<i>Acinetobacter baumannii</i> Fatty Acid Desaturases Facilitate Survival in Distinct Environments. ACS Infectious Diseases, 2021, 7, 2221-2228.	1.8	9
8	The Membrane Composition Defines the Spatial Organization and Function of a Major Acinetobacter baumannii Drug Efflux System. MBio, 2021, 12, e0107021.	1.8	14
9	To Make or Take: Bacterial Lipid Homeostasis during Infection. MBio, 2021, 12, e0092821.	1.8	19
10	The Acinetobacter baumannii Autotransporter Adhesin Ata Recognizes Host Glycans as High-Affinity Receptors. ACS Infectious Diseases, 2021, 7, 2352-2361.	1.8	12
11	A fairer way to compare researchers at any career stage and in any discipline using open-access citation data. PLoS ONE, 2021, 16, e0257141.	1.1	8
12	The Molecular Basis of Acinetobacter baumannii Cadmium Toxicity and Resistance. Applied and Environmental Microbiology, 2021, 87, e0171821.	1.4	9
13	The Impact of Omega-3 Fatty Acids on the Evolution of Acinetobacter baumannii Drug Resistance. Microbiology Spectrum, 2021, 9, e0145521.	1.2	11
14	The Role of Zinc Efflux during Acinetobacter baumannii Infection. ACS Infectious Diseases, 2020, 6, 150-158.	1.8	21
15	Cadmium stress dictates central carbon flux and alters membrane composition in Streptococcus pneumoniae. Communications Biology, 2020, 3, 694.	2.0	19
16	Advanced Resistance Studies Identify Two Discrete Mechanisms in Staphylococcus aureus to Overcome Antibacterial Compounds that Target Biotin Protein Ligase. Antibiotics, 2020, 9, 165.	1.5	3
17	Dietary zinc and the control of Streptococcus pneumoniae infection. PLoS Pathogens, 2019, 15, e1007957.	2.1	49
18	Structure and Metal Binding Properties of <i>Chlamydia trachomatis</i> YtgA. Journal of Bacteriology, 2019, 202, .	1.0	11

BART A EIJKELKAMP

#	Article	IF	CITATIONS
19	The Role of the CopA Copper Efflux System in Acinetobacter baumannii Virulence. International Journal of Molecular Sciences, 2019, 20, 575.	1.8	35
20	ldentification of Novel <i>Acinetobacter baumannii</i> Host Fatty Acid Stress Adaptation Strategies. MBio, 2019, 10, .	1.8	43
21	Biotin-mediated growth and gene expression in Staphylococcus aureus is highly responsive to environmental biotin. Applied Microbiology and Biotechnology, 2018, 102, 3793-3803.	1.7	5
22	Arachidonic Acid Stress Impacts Pneumococcal Fatty Acid Homeostasis. Frontiers in Microbiology, 2018, 9, 813.	1.5	42
23	The zinc efflux activator <scp>S</scp> cz <scp>A</scp> protects <scp><i>S</i></scp> <i>treptococcus pneumoniae</i> serotype 2 <scp>D</scp> 39 from intracellular zinc toxicity. Molecular Microbiology, 2017, 104, 636-651.	1.2	40
24	Zinc stress induces copper depletion in Acinetobacter baumannii. BMC Microbiology, 2017, 17, 59.	1.3	55
25	Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions. ACS Applied Materials & Interfaces, 2016, 8, 12727-12732.	4.0	32
26	The First Histidine Triad Motif of PhtD Is Critical for Zinc Homeostasis in <i>Streptococcus pneumoniae</i> . Infection and Immunity, 2016, 84, 407-415.	1.0	38
27	ZnuA and zinc homeostasis in Pseudomonas aeruginosa. Scientific Reports, 2015, 5, 13139.	1.6	126
28	Identification of genes essential for pellicle formation in Acinetobacter baumannii. BMC Microbiology, 2015, 15, 116.	1.3	90
29	Manganese uptake and streptococcal virulence. BioMetals, 2015, 28, 491-508.	1.8	59
30	Dysregulation of transition metal ion homeostasis is the molecular basis for cadmium toxicity in Streptococcus pneumoniae. Nature Communications, 2015, 6, 6418.	5.8	117
31	Extracellular Zinc Competitively Inhibits Manganese Uptake and Compromises Oxidative Stress Management in Streptococcus pneumoniae. PLoS ONE, 2014, 9, e89427.	1.1	127
32	Acquisition and Role of Molybdate in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 2014, 80, 6843-6852.	1.4	43
33	Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics, 2014, 15, 1020.	1.2	149
34	Overlapping Functionality of the Pht Proteins in Zinc Homeostasis of Streptococcus pneumoniae. Infection and Immunity, 2014, 82, 4315-4324.	1.0	42
35	<scp>AdcA</scp> and <scp>AdcAll</scp> employ distinct zinc acquisition mechanisms and contribute additively to zinc homeostasis in <scp><i>S</i></scp> <i>treptococcus pneumoniae</i> . Molecular Microbiology, 2014, 91, 834-851.	1.2	108
36	H-NS Plays a Role in Expression of Acinetobacter baumannii Virulence Features. Infection and Immunity, 2013, 81, 2574-2583.	1.0	100

#	Article	IF	CITATIONS
37	Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20254-20259.	3.3	138
38	The Complete Genome and Phenome of a Community-Acquired Acinetobacter baumannii. PLoS ONE, 2013, 8, e58628.	1.1	93
39	Development of a High-Throughput Cloning Strategy for Characterization of Acinetobacter baumannii Drug Transporter Proteins. Journal of Molecular Microbiology and Biotechnology, 2011, 20, 211-219.	1.0	9
40	Adherence and motility characteristics of clinical Acinetobacter baumannii isolates. FEMS Microbiology Letters, 2011, 323, 44-51.	0.7	168
41	Investigation of the human pathogen Acinetobacter baumannii under iron limiting conditions. BMC Genomics, 2011, 12, 126.	1.2	215
42	Roles of DHA2 Family Transporters in Drug Resistance and Iron Homeostasis in <i>Acinetobacter</i> spp Journal of Molecular Microbiology and Biotechnology, 2011, 20, 116-124.	1.0	34
43	Maintenance of Long-Range DNA Interactions after Inhibition of Ongoing RNA Polymerase II Transcription. PLoS ONE, 2008, 3, e1661.	1.1	114
44	Multiple Cases of Familial Transmission of Community-Acquired Methicillin-Resistant Staphylococcus aureus. Journal of Clinical Microbiology, 2006, 44, 2994-2996.	1.8	94