
Wanqing Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/72663/publications.pdf Version: 2024-02-01

WANOING WU

#	Article	IF	CITATIONS
1	Palladium-Catalyzed Oxidation of Unsaturated Hydrocarbons Using Molecular Oxygen. Accounts of Chemical Research, 2012, 45, 1736-1748.	7.6	505
2	Transition metal-catalyzed C–H functionalization of N-oxyenamine internal oxidants. Chemical Society Reviews, 2015, 44, 1155-1171.	18.7	488
3	Copper atalyzed Coupling of Oxime Acetates with Sodium Sulfinates: An Efficient Synthesis of Sulfone Derivatives. Angewandte Chemie - International Edition, 2014, 53, 4205-4208.	7.2	277
4	Haloalkynes: A Powerful and Versatile Building Block in Organic Synthesis. Accounts of Chemical Research, 2014, 47, 2483-2504.	7.6	237
5	Copperâ€Catalyzed Aerobic Oxidative NS Bond Functionalization for CS Bond Formation: Regio―and Stereoselective Synthesis of Sulfones and Thioethers. Chemistry - A European Journal, 2014, 20, 7911-7915.	1.7	210
6	Recent advances in the synthesis of cyclopropanes. Organic and Biomolecular Chemistry, 2018, 16, 7315-7329.	1.5	167
7	Copper-Catalyzed Oxidative Carbon–Carbon and/or Carbon–Heteroatom Bond Formation with O ₂ or Internal Oxidants. Accounts of Chemical Research, 2018, 51, 1092-1105.	7.6	166
8	Copper-catalyzed sulfonamides formation from sodium sulfinates and amines. Chemical Communications, 2013, 49, 6102.	2.2	152
9	Transition-metal-free synthesis of vinyl sulfones via tandem cross-decarboxylative/coupling reactions of sodium sulfinates and cinnamic acids. Green Chemistry, 2014, 16, 3720-3723.	4.6	148
10	An efficient synthesis of polysubstituted pyrroles via copper-catalyzed coupling of oxime acetates with dialkyl acetylenedicarboxylates under aerobic conditions. Chemical Communications, 2013, 49, 9597.	2.2	121
11	Ag-Catalyzed Oxidative Cyclization Reaction of 1,6-Enynes and Sodium Sulfinate: Access to Sulfonylated Benzofurans. Organic Letters, 2017, 19, 2825-2828.	2.4	111
12	Copper(I)-Catalyzed Synthesis of 2,5-Disubstituted Furans and Thiophenes from Haloalkynes or 1,3-Diynes. Journal of Organic Chemistry, 2012, 77, 5179-5183.	1.7	110
13	Copper-catalyzed oxidative [2 + 2 + 1] cycloaddition: regioselective synthesis of 1,3-oxazoles from internal alkynes and nitriles. Chemical Science, 2012, 3, 3463.	3.7	109
14	Copperâ€Catalyzed Intermolecular Oxidative Cyclization of Halo―alkynes: Synthesis of 2â€Haloâ€substituted Imidazo[1,2â€ <i>a</i>]pyridines, Imidazo[1,2â€ <i>a</i>]pyrazines and Imidazo[1,2â€ <i>a</i>]pyrimidines. Advanced Synthesis and Catalysis, 2013, 355, 2263-2273.	2.1	109
15	Copper-Catalyzed Coupling of Oxime Acetates with Isothiocyanates: A Strategy for 2-Aminothiazoles. Organic Letters, 2016, 18, 180-183.	2.4	107
16	Recent advances in organic synthesis with CO2 as C1 synthon. Current Opinion in Green and Sustainable Chemistry, 2017, 3, 22-27.	3.2	104
17	Palladium atalyzed Cascade Annulation To Construct Functionalized β―and Î³â€Łactones in Ionic Liquids. Angewandte Chemie - International Edition, 2014, 53, 7219-7222.	7.2	103
18	Cu-Catalyzed Three-Component Cascade Annulation Reaction: An Entry to Functionalized Pyridines. Journal of Organic Chemistry, 2015, 80, 8763-8771.	1.7	103

#	Article	IF	CITATIONS
19	Palladium-Catalyzed Intermolecular Dehydrogenative Aminohalogenation of Alkenes under Molecular Oxygen: An Approach to Brominated Enamines. Journal of the American Chemical Society, 2013, 135, 5286-5289.	6.6	98
20	Recent developments in palladium-catalyzed C–S bond formation. Organic Chemistry Frontiers, 2020, 7, 1395-1417.	2.3	98
21	Copper-Catalyzed Oxidative C(sp ³)–H Functionalization for Facile Synthesis of 1,2,4-Triazoles and 1,3,5-Triazines from Amidines. Organic Letters, 2015, 17, 2894-2897.	2.4	94
22	Copper-Catalyzed Aerobic Oxidative Regioselective Thiocyanation of Aromatics and Heteroaromatics. Journal of Organic Chemistry, 2017, 82, 9312-9320.	1.7	94
23	Recent Advances in Pdâ€Catalyzed Crossâ€Coupling Reaction in Ionic Liquids. European Journal of Organic Chemistry, 2018, 2018, 1284-1306.	1.2	94
24	Palladium-Catalyzed Oxidative Sulfenylation of Indoles and Related Electron-Rich Heteroarenes with Aryl Boronic Acids and Elemental Sulfur. Journal of Organic Chemistry, 2016, 81, 7771-7783.	1.7	92
25	Chemoselective Synthesis of Unsymmetrical Internal Alkynes or Vinyl Sulfones <i>via</i> Palladiumâ€Catalyzed Crossâ€Coupling Reaction of Sodium Sulfinates with Alkynes. Advanced Synthesis and Catalysis, 2014, 356, 2029-2039.	2.1	89
26	Palladium-Catalyzed Intermolecular Aerobic Oxidative Cyclization of 2-Ethynylanilines with Isocyanides: Regioselective Synthesis of 4-Halo-2-aminoquinolines. Journal of Organic Chemistry, 2013, 78, 10319-10328.	1.7	86
27	Iron-Catalyzed Synthesis of 2 <i>H</i> -Imidazoles from Oxime Acetates and Vinyl Azides under Redox-Neutral Conditions. Organic Letters, 2017, 19, 1370-1373.	2.4	84
28	Dual Catalysis: Proton/Metal-Catalyzed Tandem Benzofuran Annulation/Carbene Transfer Reaction. Organic Letters, 2016, 18, 1322-1325.	2.4	82
29	Copperâ€Catalyzed Aerobic Oxidative Transformation of Ketoneâ€Derived <i>N</i> â€Tosyl Hydrazones: An Entry to Alkynes. Angewandte Chemie - International Edition, 2014, 53, 14485-14489.	7.2	74
30	Assembly of 3-Sulfenylbenzofurans and 3-Sulfenylindoles by Palladium-Catalyzed Cascade Annulation/Arylthiolation Reaction. Journal of Organic Chemistry, 2016, 81, 2875-2887.	1.7	73
31	Synthesis of enaminones via copper-catalyzed decarboxylative coupling reaction under redox-neutral conditions. Chemical Communications, 2017, 53, 3228-3231.	2.2	73
32	Copperâ€Catalyzed C(sp ³)â^'H/C(sp ³)â^'H Crossâ€Dehydrogenative Coupling with Internal Oxidants: Synthesis of 2â€Trifluoromethylâ€Substituted Dihydropyrrolâ€2â€ols. Angewandte Chemie - International Edition, 2017, 56, 13324-13328.	7.2	72
33	Palladium-catalyzed Heck-type reaction of oximes with allylic alcohols: synthesis of pyridines and azafluorenones. Chemical Communications, 2016, 52, 84-87.	2.2	71
34	Practical Synthesis of Polysubstituted Imidazoles <i>via</i> Iodine―Catalyzed Aerobic Oxidative Cyclization of Aryl Ketones and Benzylamines. Advanced Synthesis and Catalysis, 2013, 355, 170-180.	2.1	70
35	Palladium-Catalyzed Oxidative Coupling of Aromatic Primary Amines and Alkenes under Molecular Oxygen: Stereoselective Assembly of (<i>Z</i>)-Enamines. Journal of Organic Chemistry, 2013, 78, 11155-11162.	1.7	70
36	Pd-Catalyzed Highly Regio- and Stereoselective Formation of C–C Double Bonds: An Efficient Method for the Synthesis of Benzofuran-, Dihydrobenzofuran-, and Indoline-Containing Alkenes. Journal of Organic Chemistry, 2015, 80, 7456-7467.	1.7	69

#	Article	IF	CITATIONS
37	Palladium-Catalyzed Sequential Nucleophilic Addition/Oxidative Annulation of Bromoalkynes with Benzoic Acids To Construct Functionalized Isocoumarins. Organic Letters, 2017, 19, 4440-4443.	2.4	68
38	Access to Thiazole via Copper-Catalyzed [3+1+1]-Type Condensation Reaction under Redox-Neutral Conditions. Journal of Organic Chemistry, 2016, 81, 11461-11466.	1.7	67
39	Csp ³ –P versus Csp ² –P Bond Formation: Catalyst-Controlled Highly Regioselective Tandem Reaction of Ene-Yne-Ketones with <i>H</i> Phosphonates. Organic Letters, 2016, 18, 400-403.	2.4	66
40	Synthesis of Sulfonylated Lactones via Ag-Catalyzed Cascade Sulfonylation/Cyclization of 1,6-Enynes with Sodium Sulfinates. Journal of Organic Chemistry, 2017, 82, 1224-1230.	1.7	65
41	NBS-promoted halosulfonylation of terminal alkynes: highly regio- and stereoselective synthesis of (E)-β-halo vinylsulfones. Organic Chemistry Frontiers, 2014, 1, 361-364.	2.3	64
42	Palladium-Catalyzed Oxidative Annulation of Acrylic Acid and Amide with Alkynes: A Practical Route to Synthesize α-Pyrones and Pyridones. Organic Letters, 2014, 16, 2146-2149.	2.4	64
43	Palladium-Catalyzed C–H Functionalization of Aromatic Oximes: A Strategy for the Synthesis of Isoquinolines. Journal of Organic Chemistry, 2016, 81, 1401-1409.	1.7	64
44	Palladium-Catalyzed Oxidative Allylation of Sulfoxonium Ylides: Regioselective Synthesis of Conjugated Dienones. Organic Letters, 2019, 21, 872-875.	2.4	64
45	Silverâ€Catalyzed Regio―and Stereoselective Thiocyanation of Haloalkynes: Access to (<i>Z</i>)â€Vinyl Thiocyanates. Advanced Synthesis and Catalysis, 2017, 359, 1208-1212.	2.1	62
46	Palladium-Catalyzed Intermolecular Aerobic Annulation of o-Alkenylanilines and Alkynes for Quinoline Synthesis. Organic Letters, 2016, 18, 3514-3517.	2.4	60
47	A Fourâ€Component Reaction Strategy for Pyrimidine Carboxamide Synthesis. Angewandte Chemie - International Edition, 2017, 56, 1289-1293.	7.2	58
48	Palladium-catalyzed regioselective azidation of allylic C–H bonds under atmospheric pressure of dioxygen. Organic and Biomolecular Chemistry, 2014, 12, 3340-3343.	1.5	56
49	Calcium carbide as the acetylide source: transition-metal-free synthesis of substituted pyrazoles via [1,5]-sigmatropic rearrangements. Green Chemistry, 2016, 18, 6445-6449.	4.6	56
50	Pd-Catalyzed C–H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines. Chemical Communications, 2014, 50, 8370.	2.2	55
51	Copper-Catalyzed Oxysulfenylation of Enolates with Sodium Sulfinates: A Strategy To Construct Sulfenylated Cyclic Ethers. Organic Letters, 2016, 18, 1158-1161.	2.4	55
52	Palladium-catalyzed Csp2–H carbonylation of aromatic oximes: selective access to benzo[d][1,2]oxazin-1-ones and 3-methyleneisoindolin-1-ones. Chemical Communications, 2015, 51, 6843-6846.	2.2	53
53	Palladiumâ€Catalyzed Oxidation Reactions of Alkenes with Green Oxidants. ChemSusChem, 2019, 12, 2911-2935.	3.6	53
54	Palladium-catalyzed aerobic oxidative allylic C–H arylation of alkenes with polyfluorobenzenes. Chemical Communications, 2014, 50, 7202-7204.	2.2	52

#	Article	IF	CITATIONS
55	Palladium-Catalyzed Multicomponent Reaction (MCR) of Propargylic Carbonates with Isocyanides. Organic Letters, 2016, 18, 5924-5927.	2.4	52
56	Palladium-Catalyzed Allylic C–H Oxidative Annulation for Assembly of Functionalized 2-Substituted Quinoline Derivatives. Journal of Organic Chemistry, 2016, 81, 12189-12196.	1.7	52
57	Palladium-Catalyzed Intermolecular Oxyvinylcyclization of Alkenes with Alkynes: An Approach to 3-Methylene Î ³ -Lactones and Tetrahydrofurans. Journal of Organic Chemistry, 2014, 79, 10734-10742.	1.7	51
58	Palladium-Catalyzed Oxidative Carbonylation for the Synthesis of Polycyclic Aromatic Hydrocarbons (PAHs). Journal of Organic Chemistry, 2014, 79, 11246-11253.	1.7	50
59	Access to αâ€Amino Acid Esters through Palladiumâ€Catalyzed Oxidative Amination of Vinyl Ethers with Hydrogen Peroxide as the Oxidant and Oxygen Source. Angewandte Chemie - International Edition, 2017, 56, 15926-15930.	7.2	50
60	Copper-catalyzed coupling of oxime acetates and aryldiazonium salts: an azide-free strategy toward <i>N</i> -2-aryl-1,2,3-triazoles. Organic Chemistry Frontiers, 2018, 5, 571-576.	2.3	50
61	Palladium-Catalyzed Fluoroalkylative Cyclization of Olefins. Organic Letters, 2017, 19, 1008-1011.	2.4	49
62	Recent advances in aminative difunctionalization of alkenes. Organic and Biomolecular Chemistry, 2021, 19, 3036-3054.	1.5	49
63	Transition-Metal-Free Cyclopropanation of 2-Aminoacrylates with <i>N</i> -Tosylhydrazones: A General Route to Cyclopropane α-Amino Acid with Contiguous Quaternary Carbon Centers. Organic Letters, 2016, 18, 1470-1473.	2.4	48
64	Palladium-catalyzed selective aminoamidation and aminocyanation of alkenes using isonitrile as amide and cyanide sources. Chemical Communications, 2014, 50, 15348-15351.	2.2	47
65	Palladium-Catalyzed Redox-Neutral N–O/C(sp ³)–H Functionalization of Aryl Oximes with Isocyanides. Organic Letters, 2017, 19, 678-681.	2.4	47
66	lodine-catalyzed cascade annulation of alkynes with sodium arylsulfinates: assembly of 3-sulfenylcoumarin and 3-sulfenylquinolinone derivatives. Organic Chemistry Frontiers, 2017, 4, 1751-1756.	2.3	47
67	Palladium-Catalyzed Tandem Annulation: A Strategy To Construct 2,3-Difunctionalized Benzofuran Derivatives in Ionic Liquids. Journal of Organic Chemistry, 2015, 80, 3870-3879.	1.7	46
68	Synthesis of 2,3-Difunctionalized Benzofuran Derivatives through Palladium-Catalyzed Double Isocyanide Insertion Reaction. Organic Letters, 2018, 20, 3500-3503.	2.4	45
69	Palladium-Catalyzed Coupling of Alkynes with Unactivated Alkenes in Ionic Liquids: A Regio- and Stereoselective Synthesis of Functionalized 1,6-Dienes and Their Analogues. Journal of Organic Chemistry, 2013, 78, 12477-12486.	1.7	44
70	Copper-catalyzed cyanothiolation to incorporate a sulfur-substituted quaternary carbon center. Chemical Science, 2017, 8, 7047-7051.	3.7	44
71	Copper-Catalyzed Synthesis of Substituted Quinazolines from Benzonitriles and 2-Ethynylanilines via Carbon–Carbon Bond Cleavage Using Molecular Oxygen. Journal of Organic Chemistry, 2018, 83, 5458-5466.	1.7	44
72	Controllable assembly of the benzothiazole framework using a Cî€,C triple bond as a one-carbon synthon. Chemical Communications, 2018, 54, 1742-1745.	2.2	44

#	Article	IF	CITATIONS
73	Recent advances in metal catalyzed or mediated cyclization/functionalization of alkynes to construct isoxazoles. Organic Chemistry Frontiers, 2020, 7, 2325-2348.	2.3	44
74	Efficient access to 1H-indazoles via copper-catalyzed cross-coupling/cyclization of 2-bromoaryl oxime acetates and amines. Organic Chemistry Frontiers, 2014, 1, 1295-1298.	2.3	43
75	Transition Metal Free Intermolecular Direct Oxidative C–N Bond Formation to Polysubstituted Pyrimidines Using Molecular Oxygen as the Sole Oxidant. Journal of Organic Chemistry, 2016, 81, 5538-5546.	1.7	43
76	Palladium atalyzed Cascade Cyclization/Alkynylation Reactions. Chemistry - an Asian Journal, 2019, 14, 4114-4128.	1.7	43
77	Divergent Syntheses of Isoquinolines and Indolo[1,2- <i>a</i>]quinazolines by Copper-Catalyzed Cascade Annulation from 2-Haloaryloxime Acetates with Active Methylene Compounds and Indoles. Journal of Organic Chemistry, 2016, 81, 2053-2061.	1.7	42
78	Synthesis of Polysubstituted 3-Amino Pyrroles via Palladium-Catalyzed Multicomponent Reaction. Journal of Organic Chemistry, 2017, 82, 3581-3588.	1.7	42
79	One-Pot Synthesis of Spirocyclic or Fused Pyrazoles from Cyclic Ketones: Calcium Carbide as the Carbon Source in Ring Expansion. Journal of Organic Chemistry, 2017, 82, 9479-9486.	1.7	42
80	Novel palladium-catalyzed cascade carboxylative annulation to construct functionalized γ-lactones in ionic liquids. Chemical Communications, 2014, 50, 1381-1383.	2.2	41
81	Copper-Mediated [3 + 2] Oxidative Cyclization Reaction of <i>N</i> -Tosylhydrazones and β-Ketoesters: Synthesis of 2,3,5-Trisubstituted Furans. Journal of Organic Chemistry, 2016, 81, 5014-5020.	1.7	41
82	Palladium-catalyzed regioselective hydroboration of aryl alkenes with B ₂ pin ₂ . Chemical Communications, 2018, 54, 1770-1773.	2.2	41
83	Recent Advances in Silver atalyzed Transformations of Electronically Unbiased Alkenes and Alkynes. ChemCatChem, 2020, 12, 5034-5050.	1.8	41
84	Dual Role of H ₂ O ₂ in Palladium-Catalyzed Dioxygenation of Terminal Alkenes. Organic Letters, 2017, 19, 3354-3357.	2.4	38
85	Copper-Catalyzed Unstrained C–C Single Bond Cleavage of Acyclic Oxime Acetates Using Air: An Internal Oxidant-Triggered Strategy toward Nitriles and Ketones. Journal of Organic Chemistry, 2018, 83, 14713-14722.	1.7	38
86	Iridium-Catalyzed Three-component Coupling Reaction of Carbon Dioxide, Amines, and Sulfoxonium Ylides. Organic Letters, 2019, 21, 1125-1129.	2.4	38
87	Palladium-catalyzed aerobic oxidative double allylic C–H oxygenation of alkenes: a novel and straightforward route to α,β-unsaturated esters. Chemical Communications, 2015, 51, 9575-9578.	2.2	37
88	Transition-Metal-Free Diastereoselective Epoxidation of Trifluoromethylketones with <i>N</i> -Tosylhydrazones: Access to Tetrasubstituted Trifluoromethylated Oxiranes. Organic Letters, 2016, 18, 4008-4011.	2.4	37
89	Metal-Free Catalyzed Regioselective Allylic Trifluoromethanesulfonylation of Aromatic Allylic Alcohols with Sodium Trifluoromethanesulfinate. Journal of Organic Chemistry, 2016, 81, 1304-1309.	1.7	37
90	Palladium-catalyzed cascade reaction of haloalkynes with unactivated alkenes for assembly of functionalized oxetanes. Organic Chemistry Frontiers, 2017, 4, 373-376.	2.3	37

#	Article	IF	CITATIONS
91	Palladium-catalyzed regioselective C–H alkynylation of indoles with haloalkynes: access to functionalized 7-alkynylindoles. Chemical Communications, 2019, 55, 13769-13772.	2.2	36
92	Palladium-Catalyzed Highly Regioselective Hydrocarboxylation of Alkynes with Carbon Dioxide. ACS Catalysis, 2020, 10, 7968-7978.	5.5	36
93	Selective Construction of 2-Substituted Benzothiazoles from <i>o</i> -lodoaniline Derivatives S ₈ and <i>N</i> -Tosylhydrazones. Journal of Organic Chemistry, 2018, 83, 2460-2466.	1.7	35
94	Copper-Catalyzed Cyanation of <i>N</i> -Tosylhydrazones with Thiocyanate Salt as the "CN―Source. Journal of Organic Chemistry, 2017, 82, 7621-7627.	1.7	34
95	Palladium-Catalyzed Desulfitative Oxidative Coupling between Arenesulfinic Acid Salts and Allylic Alcohols: A Strategy for the Selective Construction of β-Aryl Ketones and Aldehydes. Journal of Organic Chemistry, 2015, 80, 8903-8909.	1.7	33
96	Synthesis of Polysubstituted Pyrroles via Pd-Catalyzed Oxidative Alkene C–H Bond Arylation and Amination. Journal of Organic Chemistry, 2015, 80, 1235-1242.	1.7	33
97	Recent advances in the synthesis of bridgehead (or ring-junction) nitrogen heterocycles <i>via</i> transition metal-catalyzed C–H bond activation and functionalization. Organic Chemistry Frontiers, 2020, 7, 3067-3099.	2.3	33
98	A Three-Phase Four-Component Coupling Reaction: Selective Synthesis of o-Chloro Benzoates by KCl, Arynes, CO2, and Chloroalkanes. Organic Letters, 2019, 21, 345-349.	2.4	32
99	Amide Oxygen-Assisted Palladium-Catalyzed Hydration of Alkynes. Journal of Organic Chemistry, 2015, 80, 7594-7603.	1.7	31
100	Palladium atalyzed Cascade Cyclization/Alkynylation and Alkenylation of Alkynone <i>O</i> â€Methyloximes with Terminal Alkynes. Advanced Synthesis and Catalysis, 2018, 360, 2707-2719.	2.1	31
101	Palladium-Catalyzed Denitrogenative Synthesis of Aryl Ketones from Arylhydrazines and Nitriles Using O2 as Sole Oxidant. Journal of Organic Chemistry, 2017, 82, 2211-2218.	1.7	30
102	Carbonylation Access to Phthalimides Using Self-Sufficient Directing Group and Nucleophile. Journal of Organic Chemistry, 2018, 83, 104-112.	1.7	30
103	Palladium-Catalyzed Synthesis of 1 <i>H</i> -Indenes and Phthalimides via Isocyanide Insertion. Organic Letters, 2017, 19, 5818-5821.	2.4	29
104	TBAI or Klâ€Promoted Oxidative Coupling of Enamines and <i>N</i> â€Tosylhydrazine: An Unconventional Method toward 1,5―and 1,4,5â€6ubstituted 1,2,3â€Triazoles. Advanced Synthesis and Catalysis, 2018, 360, 3117-3123.	2.1	29
105	Synthesis of 6-aminophenanthridines via palladium-catalyzed insertion of isocyanides into N-sulfonyl-2-aminobiaryls. RSC Advances, 2014, 4, 17222-17225.	1.7	28
106	Zincâ€Catalyzed Tandem Diels–Alder Reactions of Enynals with Alkenes: Generation and Trapping of Cyclic <i>o</i> â€Quinodimethanes (<i>o</i> â€QDMs). Advanced Synthesis and Catalysis, 2016, 358, 2684-2691.	2.1	28
107	Direct access to bis-S-heterocycles <i>via</i> copper-catalyzed three component tandem cyclization using S ₈ as a sulfur source. Organic and Biomolecular Chemistry, 2019, 17, 3424-3432.	1.5	28
108	Palladium-catalyzed ionic liquid-accelerated oxidative annulation of acetylenic oximes with unactivated long-chain enols. Green Chemistry, 2020, 22, 5584-5588.	4.6	28

Wanqing Wu

#	Article	IF	CITATIONS
109	Palladium atalyzed Regioselective Three omponent Cascade Bisthiolation of Terminal Alkynes. Advanced Synthesis and Catalysis, 2018, 360, 1138-1150.	2.1	27
110	Palladium atalyzed Intermolecular Oxidative Coupling Reactions of (<i>Z</i>)â€Enamines with Isocyanides through Selective β (sp ²)â€H and/or C=C Bond Cleavage. Chinese Journal of Chemistry, 2018, 36, 712-715.	2.6	27
111	An efficient synthesis of 2,5-diimino-furans via Pd-catalyzed cyclization of bromoacrylamides and isocyanides. Chemical Communications, 2014, 50, 2037.	2.2	26
112	A regio- and diastereoselective palladium-catalyzed cyclopropanation of norbornene derivatives with molecular oxygen as the sole oxidant. Chemical Communications, 2012, 48, 10340.	2.2	25
113	Assembly of Polysubstituted Maleimides via Palladium-Catalyzed Cyclization Reaction of Alkynes with Isocyanides. Journal of Organic Chemistry, 2016, 81, 12451-12458.	1.7	25
114	Cu-Catalyzed intermolecular [3 + 3] annulation involving oxidative activation of an unreactive C(sp ³)–H bond: access to pyrimidine derivatives from amidines and ketones. Organic Chemistry Frontiers, 2017, 4, 1107-1111.	2.3	25
115	Base-Mediated Three-Component Tandem Reactions for the Synthesis of Multisubstituted Pyrimidines. Journal of Organic Chemistry, 2017, 82, 13609-13616.	1.7	25
116	Intermolecular Asymmetric Carboesterification of Alkenes by Using Chiral Amine Auxiliaries under O ₂ : Synthesis of Enantioenriched αâ€Methyleneâ€Î³â€Łactones through Chloropalladation of Alkynes. Chemistry - A European Journal, 2015, 21, 6708-6712.	1.7	24
117	Palladium-Catalyzed Oxidative O–H/N–H Carbonylation of Hydrazides: Access to Substituted 1,3,4-Oxadiazole-2(3 <i>H</i>)-ones. Journal of Organic Chemistry, 2015, 80, 5713-5718.	1.7	24
118	Oxypalladation Initiating the OxidÂative Heck Reaction with Alkenyl ÂAlcohols: Synthesis of Isocoumarin–Alkanones. European Journal of Organic Chemistry, 2016, 2016, 663-667.	1.2	24
119	Carbonyl Ylides Derived from Palladium Carbenes: The Impressive Fluorine Effect. Advanced Synthesis and Catalysis, 2017, 359, 3154-3159.	2.1	24
120	Palladium-catalyzed primary amine-directed regioselective mono- and di-alkynylation of biaryl-2-amines. Chemical Communications, 2018, 54, 1746-1749.	2.2	24
121	Tandem cyclization of <i>o</i> -alkynylanilines with isocyanides triggered by intramolecular nucleopalladation: access to heterocyclic fused 2-aminoquinolines. Chemical Communications, 2018, 54, 6855-6858.	2.2	24
122	A palladium-catalyzed oxidative aminocarbonylation reaction of alkynone <i>O</i> -methyloximes with amines and CO in PEG-400. Green Chemistry, 2020, 22, 465-470.	4.6	24
123	Facile synthesis of cyanofurans via Michael-addition/cyclization of ene–yne–ketones with trimethylsilyl cyanide. Chemical Communications, 2017, 53, 640-643.	2.2	23
124	MnO ₂ â€Promoted Oxidative Radical Sulfonylation of Haloalkynes with Sulfonyl Hydrazides: C(sp)–S Bond Formation towards Alkynyl Sulfones. Chemistry - an Asian Journal, 2017, 12, 1875-1878.	1.7	23
125	Palladium atalyzed Tandem Oxidative Arylation/Olefination of Aromatic Tethered Alkenes/Alkynes. Chemistry - A European Journal, 2017, 23, 793-797.	1.7	23
126	Assembly of 1 <i>H</i> -isoindole derivatives by selective carbon–nitrogen triple bond activation: access to aggregation-induced emission fluorophores for lipid droplet imaging. Chemical Science, 2019, 10, 7076-7081.	3.7	23

#	Article	IF	CITATIONS
127	Palladium atalyzed Regioselective Aerobic Allylic Câ^'H Oxygenation: Direct Synthesis of <i>,β</i> â€Unsaturated Aldehydes and Allylic Alcohols. Advanced Synthesis and Catalysis, 2018, 360, 1600-1604.	2.1	22
128	Palladium-catalyzed oxidative allylation of bis[(pinacolato)boryl]methane: synthesis of homoallylic boronic esters. Chemical Communications, 2018, 54, 66-69.	2.2	22
129	Direct bromocarboxylation of arynes using allyl bromides and carbon dioxide. Chemical Communications, 2019, 55, 12304-12307.	2.2	22
130	Synthesis of 3-azabicyclo[3.1.0]hexane derivatives via palladium-catalyzed cyclopropanation of maleimides with N-tosylhydrazones: practical and facile access to CP-866,087. Organic and Biomolecular Chemistry, 2017, 15, 1228-1235.	1.5	21
131	Palladium-Catalyzed Cyclization of <i>N</i> -Acyl- <i>o</i> -alkynylanilines with Isocyanides Involving a 1,3-Acyl Migration: Rapid Access to Functionalized 2-Aminoquinolines. Organic Letters, 2018, 20, 7245-7248.	2.4	21
132	Controllable <i>O</i> -Nucleometalation Cyclization Strategy: Access to Divergent Ring-Functionalized Molecules. Organic Letters, 2016, 18, 6232-6235.	2.4	20
133	N-Heterocyclic carbene palladium-catalyzed cascade annulation/alkynylation of 2-alkynylanilines with terminal alkynes. Organic and Biomolecular Chemistry, 2017, 15, 7898-7908.	1.5	20
134	DDQ-mediated regioselective C–S bond formation: efficient access to allylic sulfides. Organic Chemistry Frontiers, 2018, 5, 3158-3162.	2.3	20
135	Palladium-catalyzed regioselective C–H alkynylation of indoles with bromoalkynes in water. Organic Chemistry Frontiers, 2019, 6, 2200-2204.	2.3	20
136	Switchable Reactivity between Vinyl Azides and Terminal Alkyne by Nano Copper Catalysis. Organic Letters, 2019, 21, 2090-2094.	2.4	20
137	Palladium-Catalyzed Aerobic Oxygenation of Allylarenes. Journal of Organic Chemistry, 2017, 82, 10912-10919.	1.7	19
138	Two C–O Bond Formations on a Carbenic Carbon: Palladium-Catalyzed Coupling of N-Tosylhydrazones and Benzo-1,2-quinones To Construct Benzodioxoles. Organic Letters, 2018, 20, 3166-3169.	2.4	19
139	Restriction of Conformation Transformation in Excited State: An Aggregation-Induced Emission Building Block Based on Stable Exocyclic C=N Group. IScience, 2020, 23, 101587.	1.9	19
140	Recent advances in NHC–palladium catalysis for alkyne chemistry: versatile synthesis and applications. Organic Chemistry Frontiers, 2021, 8, 3502-3524.	2.3	19
141	Copper(II)â€Mediated Homocoupling of Thioamides for the Synthesis of 1,2,4â€Thiadiazoles. European Journal of Organic Chemistry, 2014, 2014, 4239-4243.	1.2	18
142	Palladium-catalyzed C–S bond activation and functionalization of 3-sulfenylindoles and related electron-rich heteroarenes. Organic Chemistry Frontiers, 2017, 4, 1590-1594.	2.3	18
143	Recent advancements in palladium-catalyzed reactions involving molecular oxygen. Current Opinion in Green and Sustainable Chemistry, 2017, 7, 46-55.	3.2	18
144	Access to 2-Aroylthienothiazoles via C–H/N–O Bond Functionalization of Oximes. Organic Letters, 2019, 21, 9976-9980.	2.4	18

#	Article	IF	CITATIONS
145	Palladium-catalyzed regioselective cascade reaction of carbon dioxide, amines and allenes for the synthesis of functionalized carbamates. Science China Chemistry, 2020, 63, 331-335.	4.2	18
146	Haloalkyne Chemistry. Springer Briefs in Molecular Science, 2016, , .	0.1	17
147	Nucleo-Palladation-Triggering Alkene Functionalization: A Route to Î ³ -Lactones. Organic Letters, 2017, 19, 5756-5759.	2.4	17
148	<scp>Palladiumâ€Catalyzed</scp> Sequential Cyclization/Functionalization of Oxime Ethers with Unactivated Vinyl Ethers for Tunable Assembly of Structurally Diverse Isoxazoles. Chinese Journal of Chemistry, 2021, 39, 3285-3291.	2.6	17
149	Direct Assembly of Polysubstituted Propiolamidinates via Palladium-Catalyzed Multicomponent Reaction of Isocyanides. Organic Letters, 2019, 21, 8439-8443.	2.4	16
150	Synthesis of 2-isoxazolyl-2,3-dihydrobenzofurans <i>via</i> palladium-catalyzed cascade cyclization of alkenyl ethers. Chemical Communications, 2021, 57, 4799-4802.	2.2	16
151	Palladium-Catalyzed Bond Reorganization of 1,3-Diynes: An Entry to Diverse Functionalized 1,5-Dien-3-ynes. Journal of Organic Chemistry, 2013, 78, 4580-4586.	1.7	15
152	Palladium/Copper Bimetallic Systemâ€Mediated Crossâ€Coupling of Alkynes and Alkenes: Two Strategies to Suppress βâ€H Elimination on Alkylâ€Palladium Center. Advanced Synthesis and Catalysis, 2014, 356, 1949-1954.	2.1	15
153	Copper-Catalyzed Aerobic Oxidative [3+2] Annulation for the Synthesis of 5-Amino/Imino-Substituted 1,2,4-Thiadiazoles through C–N/N–S Bond Formation. Journal of Organic Chemistry, 2018, 83, 9334-9343.	1.7	15
154	Palladium-Catalyzed Cascade Annulation/Allylation of Alkynyl Oxime Ethers with Allyl Halides: Rapid Access to Fully Substituted Isoxazoles. Journal of Organic Chemistry, 2019, 84, 11958-11970.	1.7	15
155	Synthesis of <i>β</i> â€Isoxazole Carbonyl Derivatives and their Analogues <i>via</i> Palladiumâ€Catalyzed Sequential C(<i>sp</i> ²)â^O/C(<i>sp</i> ²)â^C(<i>sp</i> ³) Bond Formations. Advanced Synthesis and Catalysis, 2019, 361, 3813-3823.	2.1	15
156	Assembly of Functionalized 4â€Alkynylisoxazoles by Palladiumâ€Catalyzed Threeâ€Component Cascade Cyclization/Alkynylation. Chemistry - an Asian Journal, 2019, 14, 2309-2315.	1.7	15
157	Access to Cycloalkeno[<i>c</i>]-Fused Pyridines via Pd-Catalyzed C(sp ²)–H Activation and Cyclization of <i>N</i> -Acetyl Hydrazones of Acylcycloalkenes with Vinyl Azides. Organic Letters, 2020, 22, 7786-7790.	2.4	15
158	B ₂ pin ₂ -Mediated Palladium-Catalyzed Diacetoxylation of Aryl Alkenes with O ₂ as Oxygen Source and Sole Oxidant. Organic Letters, 2018, 20, 5090-5093.	2.4	14
159	Palladium-Catalyzed Nitrile-Assisted C(sp ³)–Cl Bond Formation for Synthesis of Dichlorides. Organic Letters, 2019, 21, 8308-8311.	2.4	14
160	Synthesis of Isoquinoline Derivatives via Palladiumâ€Catalyzed Câ^'H/Câ^'N Bond Activation of N â€Acyl Hydrazones with α â€Substituted Vinyl Azides. Advanced Synthesis and Catalysis, 2020, 362, 1362-1369.	2.1	14
161	Recent Advances in Chemical Modifications of Nitriles. European Journal of Organic Chemistry, 2021, 2021, 6658-6669.	1.2	14
162	Cî€N bond formation via palladium-catalyzed carbene insertion into Nî€N bonds: inhibiting the general 1,2-migration process of ylide intermediates. Chemical Communications, 2017, 53, 2697-2700.	2.2	13

#	Article	IF	CITATIONS
163	Synthesis of 1,4-enyne-3-ones via palladium-catalyzed sequential decarboxylation and carbonylation of allyl alkynoates. Organic Chemistry Frontiers, 2017, 4, 1363-1366.	2.3	13
164	Palladiumâ€Catalyzed Crossâ€Coupling of Alkynyl Carboxylic Acids with Isocyanides: Solventâ€Controlled Selective Synthesis of 5â€Iminofuranones and 5â€Iminopyrrolones. Advanced Synthesis and Catalysis, 2017, 359, 3509-3514.	2.1	13
165	Palladiumâ€Catalyzed Sequential C(<i>sp</i> ²)â€H Alkynylation/Annulation of 2â€Phenylphenols with Haloalkynes Using Phenolic Hydroxyl as the Traceless Directing Group. Advanced Synthesis and Catalysis, 2018, 360, 2297-2302.	2.1	13
166	Efficient assembly of ynones <i>via</i> palladium-catalyzed sequential carbonylation/alkynylation. Organic and Biomolecular Chemistry, 2018, 16, 7383-7392.	1.5	13
167	Palladium-catalyzed oxidative amination of homoallylic alcohols: sequentially installing carbonyl and amino groups along an alkyl chain. Chemical Communications, 2017, 53, 10422-10425.	2.2	12
168	Transition-Metal-Free [3+2] Cycloaddition of Dehydroaminophosphonates and <i>N</i> -Tosylhydrazones: Access to Aminocyclopropanephosphonates with Adjacent Quaternary-Tetrasubstituted Carbon Centers. Journal of Organic Chemistry, 2017, 82, 12746-12756.	1.7	12
169	Access to Amidines and Arylbenzimidazoles: Zincâ€Promoted Rearrangement of Oxime Acetates. Advanced Synthesis and Catalysis, 2018, 360, 2020-2031.	2.1	12
170	Copper atalyzed Benzylic C—H Functionalization, Oxidation and Cyclization of Methylarenes: Direct Access to 2â€Arylbenzothiazoles. Chinese Journal of Chemistry, 2019, 37, 1158-1166.	2.6	12
171	Hydroxyl Groupâ€Assisted Palladiumâ€Catalyzed Lactonization of Homoallylic Alcohols. ChemCatChem, 2014, 6, 561-566.	1.8	11
172	Access to αâ€Amino Acid Esters through Palladium atalyzed Oxidative Amination of Vinyl Ethers with Hydrogen Peroxide as the Oxidant and Oxygen Source. Angewandte Chemie, 2017, 129, 16142-16146.	1.6	11
173	Palladium-catalyzed three-component cascade arylthiolation with aryldiazonium salts as <i>S</i> -arylation sources. Organic and Biomolecular Chemistry, 2020, 18, 4071-4078.	1.5	11
174	Recent Advances in Transformations Involving Electronâ€Rich Alkenes: Functionalization, Cyclization, and Crossâ€Metathesis Reactions. Advanced Synthesis and Catalysis, 2021, 363, 4841-4855.	2.1	11
175	Palladium-Catalyzed Intermolecular Oxidative Cyclization of Allyltosylamides with AcOH: Assembly of 3-Pyrrolin-2-ones. Journal of Organic Chemistry, 2017, 82, 8191-8198.	1.7	10
176	Facile Synthesis of π-Conjugated Quinazoline-Substituted Ethenes from 2-Ethynylanilines and Benzonitriles under Transition-Metal-Free Conditions. Journal of Organic Chemistry, 2018, 83, 10453-10464.	1.7	10
177	Palladium atalyzed Three omponent Coupling Reaction of Allyl Carboxylates, Norbornenes and Diboronates Involving Sequential Olefins Insertion and Borylation Reaction. Chinese Journal of Chemistry, 2019, 37, 140-147.	2.6	10
178	Access to Polysubstituted (Furyl)methylthioethers via a Base-Promoted S-H Insertion Reaction of Conjugated Enynones. Journal of Organic Chemistry, 2019, 84, 14529-14539.	1.7	9
179	NHC–palladium-catalyzed ionic liquid-accelerated regioselective oxyarylation of alkynes with diaryl ethers. Green Chemistry, 2022, 24, 1983-1988.	4.6	9
180	Pd-Catalyzed Three-Component Reaction of Anilines, Ethyl Vinyl Ether, and Nitro-Paraffin: Assembly of β-Nitroamines. Organic Letters, 2018, 20, 550-553.	2.4	8

#	Article	IF	CITATIONS
181	Transition-metal-free <i>N</i> -difluoromethylation of hydrazones with TMSCF ₂ Br as the difluoromethylation reagent. Organic Chemistry Frontiers, 2019, 6, 2462-2466.	2.3	8
182	Oneâ€Pot Palladium atalyzed Carbonylative Sonogashira Coupling using Carbon Dioxide as Carbonyl Source. ChemCatChem, 2021, 13, 2843-2851.	1.8	8
183	Selective Synthesis of Nonâ€Aromatic Fiveâ€Membered Sulfur Heterocycles from Alkynes by using a Proton Acid/ N hlorophthalimide System. Angewandte Chemie - International Edition, 2021, 60, 1313-1322.	7.2	7
184	Recent Advances for Hydration Reaction of Nitriles in Different Catalytic Systems. Chinese Journal of Organic Chemistry, 2021, 41, 969.	0.6	7
185	Synthesis of Densely Substituted Pyridine Derivatives from 1-Methyl-1,3-(ar)enynes and Nitriles by a Formal [4+2] Cycloaddition Reaction. Organic Letters, 2022, 24, 1292-1297.	2.4	7
186	Palladiumâ€Catalyzed Regio―and Stereoselective Sulfonylation of Aryl Propiolates with Sulfonyl Hydrazides: Access to (<i>E</i>)â€ <i>β</i> â€Aryl Sulfonyl Acrylates. Advanced Synthesis and Catalysis, 2019, 361, 4575-4580.	2.1	6
187	Palladium-catalyzed cascade carboesterification of norbornene with alkynes. Organic and Biomolecular Chemistry, 2018, 16, 8495-8504.	1.5	5
188	Synthesis of 2,5-disubstituted selenophenes <i>via</i> a copper-catalyzed regioselective [2+2+1] cyclization of terminal alkynes and selenium. Chemical Communications, 2022, 58, 6522-6525.	2.2	5
189	Conversion of Triple Bonds into Single Bonds in a Domino Carbopalladation with Norbornene. Chemistry - an Asian Journal, 2017, 12, 2991-2995.	1.7	4
190	Palladium-catalyzed aerobic oxyarylthiolation of alkynone O-methyloximes with arylhydrazines and elemental sulfur. Organic and Biomolecular Chemistry, 2021, 19, 3396-3403.	1.5	4
191	Synthesis of medicinally relevant oxalylamines via copper/Lewis acid synergistic catalysis. Science Advances, 2021, 7, .	4.7	3
192	Pd-Catalyzed Sequential Formation of C–C Bonds: A New Strategy for the Synthesis of (E)-α,β-Unsaturated Carbonyl Compounds from Sulfoxonium Ylides and 1-Iodo-2-((2-methylallyl)oxy)benzene Compounds. Journal of Organic Chemistry, 2021, 86, 11545-11556.	1.7	3
193	Pd(II)-Catalyzed Synthesis of Alicyclic[<i>b</i>]-Fused Pyridines via C(sp ²)–H Activation of <i>l±,l²</i> -Unsaturated <i>N</i> -Acetyl Hydrazones with Vinyl Azides. Journal of Organic Chemistry, 2022, 87, 159-171.	1.7	3
194	C–H Amination Enabled [2+1+1+1] Annulation Reaction in Water: Access to Benzoxazoles. European Journal of Organic Chemistry, 2021, 2021, 5998-6001.	1.2	2
195	Innentitelbild: Copper-Catalyzed Coupling of Oxime Acetates with Sodium Sulfinates: An Efficient Synthesis of Sulfone Derivatives (Angew. Chem. 16/2014). Angewandte Chemie, 2014, 126, 4090-4090.	1.6	0