Piotr Jankowski

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7266293/piotr-jankowski-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

43
papers

675
citations

14
papers

46
ext. papers

675
citations

14
papers

8.5
avg, IF

L-index

#	Paper	IF	Citations
43	Dual Role of Mo S in Polysulfide Conversion and Shuttle for Mg-S Batteries <i>Advanced Science</i> , 2022 , e2104605	13.6	7
42	Development of Magnesium Borate Electrolytes: Explaining the Success of Mg[B(hfip)4]2 Salt. <i>Energy Storage Materials</i> , 2021 , 45, 1133-1133	19.4	7
41	Critical Role of Functional Groups Containing N, S, and O on Graphene Surface for Stable and Fast Charging Li-S Batteries. <i>Small</i> , 2021 , 17, e2007242	11	7
40	Ab initio Molecular Dynamics Investigations of the Speciation and Reactivity of Deep Eutectic Electrolytes in Aluminum Batteries. <i>ChemSusChem</i> , 2021 , 14, 1973	8.3	
39	Ab initio Molecular Dynamics Investigations of the Speciation and Reactivity of Deep Eutectic Electrolytes in Aluminum Batteries. <i>ChemSusChem</i> , 2021 , 14, 2034-2041	8.3	6
38	Polymers for aluminium secondary batteries: Solubility, ionogel formation and chloroaluminate speciation. <i>Polymer</i> , 2021 , 224, 123707	3.9	5
37	Prospects for Improved Magnesocene-Based Magnesium Battery Electrolytes. <i>Batteries and Supercaps</i> , 2021 , 4, 1335-1343	5.6	О
36	Designing High-Performant Lithium Battery Electrolytes by Utilizing Two Natures of Li + Coordination: LiTDI/LiTFSI in Tetraglyme. <i>Batteries and Supercaps</i> , 2021 , 4, 205-213	5.6	1
35	Modeling of Electron-Transfer Kinetics in Magnesium Electrolytes: Influence of the Solvent on the Battery Performance. <i>ChemSusChem</i> , 2021 , 14, 4820-4835	8.3	3
34	Modeling of Ion Agglomeration in Magnesium Electrolytes and its Impacts on Battery Performance. <i>ChemSusChem</i> , 2020 , 13, 3599-3604	8.3	9
33	Amine- and Amide-Functionalized Mesoporous Carbons: A Strategy for Improving Sulfur/Host Interactions in Liß Batteries. <i>Batteries and Supercaps</i> , 2020 , 3, 757-765	5.6	5
32	Multi-Electron Reactions Enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 11483-11490	16.4	47
31	Multi-Electron Reactions Enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries. <i>Angewandte Chemie</i> , 2020 , 132, 11580-11587	3.6	5
30	Design of a Multifunctional Interlayer for NASCION-Based Solid-State Li Metal Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2001444	15.6	57
29	Charge storage mechanism of \textstyle MnO2 in protic and aprotic ionic liquid electrolytes. <i>Journal of Power Sources</i> , 2020 , 460, 228111	8.9	8
28	Structure of Magnesium Chloride Complexes in Ethereal Systems: Computational Comparison of THF and Glymes as Solvents for Magnesium Battery Electrolytes. <i>Batteries and Supercaps</i> , 2020 , 3, 1350-	-₹359	10
27	Cationic and Betaine-Type Boronated Acridinium Dyes: Synthesis, Characterization, and Photocatalytic Activity. <i>ACS Omega</i> , 2019 , 4, 2482-2492	3.9	11

The effect of locking Econjugation in organoboron moieties in the structures of luminescent tetracoordinate boron complexes. <i>Dalton Transactions</i> , 2019 , 48, 8642-8663	4.3	17
Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds. <i>Journal of Power Sources</i> , 2019 , 427, 77-84	8.9	20
Functional ionic liquids: Cationic SEI-formers for lithium batteries. <i>Energy Storage Materials</i> , 2019 , 20, 108-117	19.4	14
Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality?. <i>Chemical Reviews</i> , 2019 , 119, 4569-4627	68.1	121
Anion amphiprotic ionic liquids as protic electrolyte matrices allowing sodium metal plating. <i>Chemical Communications</i> , 2019 , 55, 12523-12526	5.8	5
Snapshots of the Hydrolysis of Lithium 4,5-Dicyanoimidazolatelllyme Solvates. Impact of Water Molecules on Aggregation Processes in Lithium-Ion Battery Electrolytes. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 3201-3210	3.8	3
Catching TFSI: A Computational-Experimental Approach to Ecyclodextrin-Based Host-Guest Systems as electrolytes for Li-Ion Batteries. <i>ChemSusChem</i> , 2018 , 11, 1942-1949	8.3	2
Chemically soft solid electrolyte interphase forming additives for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22609-22618	13	3
Insight on the conductivity mechanism in sodium 4,5-dicyano-2-trifluoromethyl-imidazolide-poly (ethylene oxide) system. <i>Electrochimica Acta</i> , 2018 , 291, 161-167	6.7	4
Diglyme Based Electrolytes for Sodium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 2671-2680	6.1	61
Impact of Sulfur-Containing Additives on Lithium-Ion Battery Performance: From Computational Predictions to Full-Cell Assessments. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2582-2591	6.1	21
Fluorine-free electrolytes for all-solid sodium-ion batteries based on percyano-substituted organic salts. <i>Scientific Reports</i> , 2017 , 7, 40036	4.9	22
Comparative investigation of solid electrolyte interphases created by the electrolyte additives vinyl ethylene carbonate and dicyano ketene vinyl ethylene acetal. <i>Journal of Power Sources</i> , 2017 , 345, 212-	2 <mark>8</mark> .8	10
Synthesis, characterization and photoluminescence of 8-oxyquinolinato organoboron complexes derived from pyrazole. <i>Tetrahedron Letters</i> , 2017 , 58, 1185-1189	2	5
SEI-forming electrolyte additives for lithium-ion batteries: development and benchmarking of computational approaches. <i>Journal of Molecular Modeling</i> , 2017 , 23, 6	2	27
TFSI and TDI Anions: Probes for Solvate Ionic Liquid and Disproportionation-Based Lithium Battery Electrolytes. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 3678-3682	6.4	16
Coordination Abilities of 4,5-Dicyano-2-(trifluoromethyl)imidazolate Anion toward Sodium Cation: Structural and Spectroscopic Studies of Solid and Liquid Glyme-Solvated Electrolyte Systems. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 26713-26721	3.8	5
Highly Fluorescent Red-Light Emitting Bis(boranils) Based on Naphthalene Backbone. <i>Journal of Organic Chemistry</i> , 2017 , 82, 8234-8241	4.2	43
	tetracoordinate boron complexes. <i>Dalton Transactions</i> , 2019 , 48, 8642-8663 Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds. <i>Journal of Power Sources</i> , 2019 , 427, 77-84 Functional ionic liquids: Cationic SEI-formers for lithium batteries. <i>Energy Storage Materials</i> , 2019 , 20, 108-117 Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality?. <i>Chemical Reviews</i> , 2019 , 119, 4569-4627 Anion amphiprotic ionic liquids as protic electrolyte matrices allowing sodium metal plating. <i>Chemical Communications</i> , 2019 , 55, 12523-12526 Snapshots of the Hydrolysis of Lithium 4,5-DioyanoimidazolateGlyme Solvates. Impact of Water Molecules on Aggregation Processes in Lithium-Ion Battery Electrolytes. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 3201-3210 Catching TFSI: A Computational-Experimental Approach to Bcyclodextrin-Based Host-Guest Systems as electrolytes for Li-lon Batteries. <i>ChemSusChem</i> , 2018 , 11, 1942-1949 Chemically soft solid electrolyte interphase forming additives for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 22609-22618 Insight on the conductivity mechanism in sodium 4,5-dicyano-2-trifluoromethyl-imidazolide-poly (ethylene oxide) system. <i>Electrochimica Acta</i> , 2018 , 291, 161-167 Diglyme Based Electrolytes for Sodium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2671-2680 Impact of Sulfur-Containing Additives on Lithium-Ion Battery Performance: From Computational Predictions to Full-Cell Assessments. <i>ACS Applied Energy Materials</i> , 2018 , 1, 2582-2591 Fluorine-free electrolytes for all-solid sodium-ion batteries based on percyano-substituted organic salts. <i>Scientific Reports</i> , 2017 , 7, 40036 Comparative investigation of solid electrolyte interphases created by the electrolyte additives vinyl ethylene acetal. <i>Journal of Power Sources</i> , 2017 , 345, 212-Synthesis, characterization and photoluminescence of 8-oxyquinolinato organoboron complexes derived from pyraz	tetracoordinate boron complexes. Dalton Transactions, 2019, 48, 8642-8663 Towards a better understanding of vinylene carbonate derived SEI-layers by synthesis of reduction compounds. Journal of Power Sources, 2019, 427, 77-84 Functional ionic liquids: Cationic SEI-formers for lithium batteries. Energy Storage Materials, 2019, 20, 108-117 Boosting Rechargeable Batteries R&D by Multiscale Modeling: Myth or Reality2. Chemical Reviews, 2019, 119, 4569-4627 Anion amphiprotic ionic liquids as protic electrolyte matrices allowing sodium metal plating. Chemical Communications, 2019, 55, 12523-12526 Snapshots of the Hydrolysis of Lithium 4,5-DicyanoimidazolateBlyme Solvates. Impact of Water Molecules on Aggregation Processes in Lithium-Ion Battery Electrolytes. Journal of Physical Chemistry, 2018, 122, 320-12310 Catching TFSI: A Computational-Experimental Approach to Ecyclodextrin-Based Host-Guest Systems as electrolytes for Li-Ion Batteries. ChemSusChem, 2018, 11, 1942-1949 Chemically soft solid electrolyte interphase forming additives for lithium-ion batteries. Journal of Materials Chemistry, 4, 2018, 6, 22609-22618 Insight on the conductivity mechanism in sodium 4,5-dicyano-2-trifluoromethyl-limidazolide-poly (ethylene oxide) system. Electrochimica Acta, 2018, 291, 161-167 Diglyme Based Electrolytes for Sodium-Ion Batteries. ACS Applied Energy Materials, 2018, 1, 2671-2680 6.1 Impact of Sulfur-Containing Additives on Lithium-Ion Batteries based on percyano-substituted organic salts. Scientific Reports, 2017, 7, 40036 Comparative investigation of solid electrolyte interphases created by the electrolyte additives vinyl ethylene carbonate and dicyano ketne vinyl ethylene acetal. Journal of Power Sources, 2017, 345, 212-280 Synthesis, characterization and photoluminescence of 8-oxyquinolinato organoboron complexes derived from pyrazole. Tetrahedron Letters, 2017, 58, 1185-1189 Self-forming electrolyte additives for lithium-ion batteries: development and benchmarking of computational approaches. Journal of Ph

8	Facile reduction of pseudo-carbonates: Promoting solid electrolyte interphases with dicyanoketene alkylene acetals in lithium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 303, 1-9	8.9	8
7	New boron based salts for lithium-ion batteries using conjugated ligands. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 16274-80	3.6	14
6	Understanding of Lithium 4,5-Dicyanoimidazolate Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivity. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 23358-2	3 ³ 87	6
5	Structural Studies of Lithium 4,5-Dicyanoimidazolate©lyme Solvates. 2. Ionic Aggregation Modes in Solution and PEO Matrix. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 10247-10254	3.8	14
4	Role of propylene carbonate chirality on physicochemical properties of the corresponding ion conductors. <i>Electrochimica Acta</i> , 2015 , 175, 240-246	6.7	3
3	Structural Studies of Lithium 4,5-Dicyanoimidazolate©lyme Solvates. 1. From Isolated Free Ions to Conductive Aggregated Systems. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 9108-9116	3.8	20
2	Influence of the diol structure on the Lewis acidity of phenylboronates. <i>Journal of Physical Organic Chemistry</i> , 2013 , 26, 415-419	2.1	21
1	Influence of Ionic Coordination on the Cathode Reaction Mechanisms of Al/S Batteries. <i>Journal of Physical Chemistry C</i> ,	3.8	1