Solveig Hofvind

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7266291/publications.pdf

Version: 2024-02-01

159585 106344 4,684 116 30 citations h-index papers

65 g-index 119 119 119 3407 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Comparison of Digital Mammography Alone and Digital Mammography Plus Tomosynthesis in a Population-based Screening Program. Radiology, 2013, 267, 47-56.	7.3	857
2	Two-View Digital Breast Tomosynthesis Screening with Synthetically Reconstructed Projection Images: Comparison with Digital Breast Tomosynthesis with Full-Field Digital Mammographic Images. Radiology, 2014, 271, 655-663.	7.3	286
3	Randomized Trial of Screen-Film versus Full-Field Digital Mammography with Soft-Copy Reading in Population-based Screening Program: Follow-up and Final Results of Oslo II Study. Radiology, 2007, 244, 708-717.	7.3	205
4	Prospective trial comparing full-field digital mammography (FFDM) versus combined FFDM and tomosynthesis in a population-based screening programme using independent double reading with arbitration. European Radiology, 2013, 23, 2061-2071.	4.5	196
5	Breast Cancer Screening and Diagnosis: A Synopsis of the European Breast Guidelines. Annals of Internal Medicine, 2020, 172, 46.	3.9	157
6	Mammographic Screening Programmes in Europe: Organization, Coverage and Participation. Journal of Medical Screening, 2012, 19, 72-82.	2.3	142
7	Digital Mammography versus Digital Mammography Plus Tomosynthesis in Breast Cancer Screening: The Oslo Tomosynthesis Screening Trial. Radiology, 2019, 291, 23-30.	7.3	115
8	Using the European guidelines to evaluate the Norwegian Breast Cancer Screening Program. European Journal of Epidemiology, 2007, 22, 447-455.	5.7	105
9	Digital Breast Tomosynthesis and Synthetic 2D Mammography versus Digital Mammography: Evaluation in a Population-based Screening Program. Radiology, 2018, 287, 787-794.	7.3	105
10	False-Positive Results in Mammographic Screening for Breast Cancer in Europe: A Literature Review and Survey of Service Screening Programmes. Journal of Medical Screening, 2012, 19, 57-66.	2.3	104
11	Performance of breast cancer screening using digital breast tomosynthesis: results from the prospective population-based Oslo Tomosynthesis Screening Trial. Breast Cancer Research and Treatment, 2018, 169, 489-496.	2.5	101
12	Breast cancer mortality in participants of the Norwegian Breast Cancer Screening Program. Cancer, 2013, 119, 3106-3112.	4.1	98
13	The cumulative risk of a false-positive recall in the Norwegian Breast Cancer Screening Program. Cancer, 2004, 101, 1501-1507.	4.1	92
14	Full-field digital mammography compared to screen film mammography in the prevalent round of a population-based screening programme: the Vestfold County Study. European Radiology, 2008, 18, 183-191.	4.5	92
15	Breast Cancer: Missed Interval and Screening-detected Cancer at Full-Field Digital Mammography and Screen-Film Mammographyâ€" Results from a Retrospective Review. Radiology, 2012, 264, 378-386.	7.3	91
16	Comparing Screening Mammography for Early Breast Cancer Detection in Vermont and Norway. Journal of the National Cancer Institute, 2008, 100, 1082-1091.	6.3	82
17	Parity, hormones and breast cancer subtypes - results from a large nested case-control study in a national screening program. Breast Cancer Research, 2017, 19, 10.	5.0	77
18	Two-view digital breast tomosynthesis versus digital mammography in a population-based breast cancer screening programme (To-Be): a randomised, controlled trial. Lancet Oncology, The, 2019, 20, 795-805.	10.7	75

#	Article	lF	CITATIONS
19	Variation in detection of ductal carcinoma in situ during screening mammography: A survey within the International Cancer Screening Network. European Journal of Cancer, 2014, 50, 185-192.	2.8	58
20	Influence of Review Design on Percentages of Missed Interval Breast Cancers: Retrospective Study of Interval Cancers in a Population-based Screening Program. Radiology, 2005, 237, 437-443.	7.3	55
21	Interval and Consecutive Round Breast Cancer after Digital Breast Tomosynthesis and Synthetic 2D Mammography versus Standard 2D Digital Mammography in BreastScreen Norway. Radiology, 2020, 294, 256-264.	7.3	55
22	Screening-detected Breast Cancers: Discordant Independent Double Reading in a Population-based Screening Program. Radiology, 2009, 253, 652-660.	7.3	49
23	Mammographic Performance in a Population-based Screening Program: Before, during, and after the Transition from Screen-Film to Full-Field Digital Mammography. Radiology, 2014, 272, 52-62.	7.3	49
24	Cross-national comparison of screening mammography accuracy measures in U.S., Norway, and Spain. European Radiology, 2016, 26, 2520-2528.	4.5	47
25	Stage-specific breast cancer incidence rates among participants and non-participants of a population-based mammographic screening program. Breast Cancer Research and Treatment, 2012, 135, 291-299.	2.5	46
26	Can artificial intelligence reduce the interval cancer rate in mammography screening?. European Radiology, 2021, 31, 5940-5947.	4.5	44
27	Artificial Intelligence Evaluation of 122 969 Mammography Examinations from a Population-based Screening Program. Radiology, 2022, 303, 502-511.	7.3	44
28	Incidence and tumor characteristics of breast cancer diagnosed before and after implementation of a population-based screening-program. Acta Oncol \tilde{A}^3 gica, 2008, 47, 225-231.	1.8	42
29	Menopausal hormone therapy and risk of melanoma: Do estrogens and progestins have a different role?. International Journal of Cancer, 2017, 141, 1763-1770.	5.1	39
30	Alcohol, Physical Activity, Smoking, and Breast Cancer Subtypes in a Large, Nested Case–Control Study from the Norwegian Breast Cancer Screening Program. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 1736-1744.	2.5	37
31	Automated Volumetric Analysis of Mammographic Density in a Screening Setting: Worse Outcomes for Women with Dense Breasts. Radiology, 2018, 288, 343-352.	7.3	35
32	Menopausal hormone therapy and colorectal cancer: a linkage between nationwide registries in Norway. BMJ Open, 2017, 7, e017639.	1.9	33
33	Missed and True Interval and Screen-detected Breast Cancers in a Population Based Screening Program. Academic Radiology, 2011, 18, 454-460.	2.5	32
34	Mammographic screening attendance among immigrant and minority women: a systematic review and meta-analysis. Acta Radiologica, 2018, 59, 1285-1291.	1.1	32
35	Meta-analysis of prospective studies evaluating breast cancer detection and interval cancer rates for digital breast tomosynthesis versus mammography population screening. European Journal of Cancer, 2021, 148, 14-23.	2.8	32
36	Mode of detection: an independent prognostic factor for women with breast cancer. Journal of Medical Screening, 2016, 23, 89-97.	2.3	31

3

#	Article	IF	Citations
37	Lower attendance rates in immigrant versus non-immigrant women in the Norwegian Breast Cancer Screening Programme. Journal of Medical Screening, 2018, 25, 155-161.	2.3	31
38	Use of hormone therapy and risk of breast cancer detected at screening and between mammographic screens. International Journal of Cancer, 2006, 118, 3112-3117.	5.1	30
39	Interval Breast Cancer Rates and Histopathologic Tumor Characteristics after False-Positive Findings at Mammography in a Population-based Screening Program. Radiology, 2018, 287, 58-67.	7.3	30
40	The risk of radiation-induced breast cancers due to biennial mammographic screening in women aged 50–69 years is minimal. Acta Radiologica, 2014, 55, 1174-1179.	1.1	29
41	A randomized controlled trial of digital breast tomosynthesis versus digital mammography in population-based screening in Bergen: interim analysis of performance indicators from the To-Be trial. European Radiology, 2019, 29, 1175-1186.	4.5	29
42	Breast cancer incidence trends in Norwayâ€"explained by hormone therapy or mammographic screening?. International Journal of Cancer, 2012, 130, 2930-2938.	5.1	28
43	Impact of Artificial Intelligence Decision Support Using Deep Learning on Breast Cancer Screening Interpretation with Single-View Wide-Angle Digital Breast Tomosynthesis. Radiology, 2021, 300, 529-536.	7.3	27
44	Comparing Interval Breast Cancer Rates in Norway and North Carolina: Results and Challenges. Journal of Medical Screening, 2009, 16, 131-139.	2.3	26
45	Do the results of the process indicators in the Norwegian breast cancer screening program predict future mortality reduction from breast cancer?. Acta Oncol \tilde{A}^3 gica, 2004, 43, 467-473.	1.8	24
46	Influence of Mammography Volume on Radiologists' Performance: Results from BreastScreen Norway. Radiology, 2019, 292, 289-296.	7.3	24
47	Postmenopausal hormone therapy and the risk of breast cancer in Norway. International Journal of Cancer, 2016, 138, 584-593.	5.1	22
48	Compression forces used in the Norwegian Breast Cancer Screening Program. British Journal of Radiology, 2017, 90, 20160770.	2.2	22
49	Is breast compression associated with breast cancer detection and other early performance measures in a population-based breast cancer screening program?. Breast Cancer Research and Treatment, 2017, 163, 605-613.	2.5	21
50	Interval and Subsequent Round Breast Cancer in a Randomized Controlled Trial Comparing Digital Breast Tomosynthesis and Digital Mammography Screening. Radiology, 2021, 300, 66-76.	7.3	21
51	Possible strategies for use of artificial intelligence in screen-reading of mammograms, based on retrospective data from 122,969 screening examinations. European Radiology, 2022, 32, 8238-8246.	4.5	21
52	Stage-specific incidence and survival of breast cancer in Norway: The implications of changes in coding and classification practice. Breast, 2018, 38, 107-113.	2.2	19
53	Volumetric Mammographic Density, Age-Related Decline, and Breast Cancer Risk Factors in a National Breast Cancer Screening Program. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 1065-1074.	2.5	19
54	Screening outcome for consecutive examinations with digital breast tomosynthesis versus standard digital mammography in a population-based screening program. European Radiology, 2019, 29, 6991-6999.	4.5	19

#	Article	IF	CITATIONS
55	Comparing Screening Outcomes for Digital Breast Tomosynthesis and Digital Mammography by Automated Breast Density in a Randomized Controlled Trial: Results from the To-Be Trial. Radiology, 2020, 297, 522-531.	7.3	19
56	True and Missed Interval Cancer in Organized Mammographic Screening: A Retrospective Review Study of Diagnostic and Prior Screening Mammograms. Academic Radiology, 2022, 29, S180-S191.	2.5	19
57	Radiological review of prior screening mammograms of screen-detected breast cancer. European Radiology, 2021, 31, 2568-2579.	4.5	18
58	Number and characteristics of breast cancer cases diagnosed in four periods in the screening interval of a biennial population-based screening programme. Journal of Medical Screening, 2006, 13, 192-196.	2.3	17
59	Radiographers' opinions on radiography research in Norway – A national survey. Radiography, 2017, 23, 135-140.	2.1	17
60	Validity and reliability of self-reported health indicators among women attending organized mammographic screening. Scandinavian Journal of Public Health, 2018, 46, 744-751.	2.3	17
61	Interval breast cancer rates for digital breast tomosynthesis versus digital mammography population screening: An individual participant data meta-analysis. EClinicalMedicine, 2021, 34, 100804.	7.1	17
62	Breast compression parameters and mammographic density in the Norwegian Breast Cancer Screening Programme. European Radiology, 2018, 28, 1662-1672.	4.5	16
63	Assessment of breast positioning criteria in mammographic screening: Agreement between artificial intelligence software and radiographers. Journal of Medical Screening, 2021, 28, 448-455.	2.3	16
64	Compression force and radiation dose in the Norwegian Breast Cancer Screening Program. European Journal of Radiology, 2017, 88, 41-46.	2.6	15
65	Breast Cancer Mortality After Implementation of Organized Population-Based Breast Cancer Screening in Norway. Journal of the National Cancer Institute, 2020, 112, 839-846.	6.3	15
66	The cumulative risk of falseâ€positive results in the Norwegian Breast Cancer Screening Program: Updated results. Cancer, 2013, 119, 3952-3958.	4.1	13
67	Trends in aggregate cancer incidence rates in relation to screening and possible overdiagnosis: A word of caution. Journal of Medical Screening, 2014, 21, 24-29.	2.3	13
68	Lower attendance rates in BreastScreen Norway among immigrants across all levels of socio-demographic factors: a population-based study. Zeitschrift Fur Gesundheitswissenschaften, 2019, 27, 229-240.	1.6	13
69	The impact of compression force and pressure at prevalent screening on subsequent re-attendance in a national screening program. Preventive Medicine, 2018, 108, 129-136.	3.4	11
70	Breast compression and experienced pain during mammography by use of three different compression paddles. European Journal of Radiology, 2019, 115, 59-65.	2.6	11
71	Number of Risky Lifestyle Behaviors and Breast Cancer Risk. JNCI Cancer Spectrum, 2018, 2, pky030.	2.9	10
72	Does it matter for the radiologists' performance whether they read short or long batches in organized mammographic screening?. European Radiology, 2021, 31, 9548-9555.	4.5	10

#	Article	IF	CITATIONS
73	Quality of life among women with symptomatic, screen-detected, and interval breast cancer, and for women without breast cancer: a retrospective cross-sectional study from Norway. Quality of Life Research, 2022, 31, 1057-1068.	3.1	10
74	An individual participant data meta-analysis of breast cancer detection and recall rates for digital breast tomosynthesis versus digital mammography population screening. Clinical Breast Cancer, 2022, 22, e647-e654.	2.4	10
75	Comparison of subjective and fully automated methods for measuring mammographic density. Acta Radiologica, 2018, 59, 154-160.	1.1	9
76	Breast cancer screening – prevalence of disease in women who only respond after an invitation reminder. Journal of Medical Screening, 2007, 14, 21-22.	2.3	8
77	Quality assurance of mammograms in the Norwegian Breast Cancer Screening Program. European Journal of Radiography, 2009, $1,22-29$.	0.2	8
78	Mammographic density and histopathologic characteristics of screen-detected tumors in the Norwegian Breast Cancer Screening Program. Acta Radiologica Open, 2015, 4, 205846011560434.	0.6	8
79	Positive predictive values by mammographic density and screening mode in the Norwegian Breast Cancer Screening Program. European Journal of Radiology, 2016, 85, 248-254.	2.6	8
80	Cost differences between digital tomosynthesis and standard digital mammography in a breast cancer screening programme: results from the To-Be trial in Norway. European Journal of Health Economics, 2019, 20, 1261-1269.	2.8	8
81	Factors associated with attendance and attendance patterns in a population-based mammographic screening program. Journal of Medical Screening, 2021, 28, 169-176.	2.3	8
82	Balancing the benefits and detriments among women targeted by the Norwegian Breast Cancer Screening Program. Journal of Medical Screening, 2016, 23, 203-209.	2.3	7
83	Breast compression parameters among women screened with standard digital mammography and digital breast tomosynthesis in a randomized controlled trial. Acta Radiologica, 2020, 61, 321-330.	1.1	7
84	Mammographic features and screening outcome in a randomized controlled trial comparing digital breast tomosynthesis and digital mammography. European Journal of Radiology, 2021, 141, 109753.	2.6	7
85	Digital breast tomosynthesis in a population based mammographic screening program: Breast compression and early performance measures. European Journal of Radiology, 2021, 139, 109665.	2.6	7
86	Overdiagnosis in Mammographic Screening because of Competing Risk of Death. Cancer Epidemiology Biomarkers and Prevention, 2016, 25, 759-765.	2.5	6
87	Impact of errors in recorded compressed breast thickness measurements on volumetric density classification using <scp>volpara</scp> v1.5.0 software. Medical Physics, 2016, 43, 2870-2876.	3.0	6
88	Breast compression across consecutive examinations among females participating in BreastScreen Norway. British Journal of Radiology, 2018, 91, 20180209.	2.2	6
89	Risk of breast cancer by prior screening results among women participating in BreastScreen Norway. Cancer, 2019, 125, 3330-3337.	4.1	6
90	Gender, letters, relatives, and God: mediating actors in mammographic screening among Pakistani women in Norway. Acta Radiologica Open, 2019, 8, 205846011987501.	0.6	6

#	Article	IF	Citations
91	Consensus Reads: The More Sets of Eyes Interpreting a Mammogram, the Better for Women. Radiology, 2020, 295, 42-43.	7.3	6
92	Terminal digit preference: a source of measurement error in breast cancer diameter reporting. Acta $Oncol\tilde{A}^3$ gica, 2020, 59, 260-267.	1.8	5
93	Can breast cancer be stopped? Modifiable risk factors of breast cancer among women with a prior benign or premalignant lesion. International Journal of Cancer, 2021, 149, 1247-1256.	5.1	5
94	The relation of number of childbirths with age at natural menopause: a population study of 310 147 women in Norway. Human Reproduction, 2022, 37, 333-340.	0.9	5
95	Screen-detected and interval breast cancer after concordant and discordant interpretations in a population based screening program using independent double reading. European Radiology, 2022, 32, 5974-5985.	4.5	5
96	Cumulative risk of a falseâ€positive screening result: A retrospective cohort study using empirical data from 10 biennial screening rounds in BreastScreen Norway. Cancer, 2022, 128, 1373-1380.	4.1	5
97	Menopausal hormone therapy and breast cancer risk: effect modification by body mass through life. European Journal of Epidemiology, 2019, 34, 267-278.	5.7	4
98	Performance measures among non-immigrants and immigrants attending BreastScreen Norway: a population-based screening programme. European Radiology, 2019, 29, 4833-4842.	4.5	4
99	Survival among women diagnosed with screen-detected or interval breast cancer classified as true, minimal signs, or missed through an informed radiological review. European Radiology, 2021, 31, 2677-2686.	4.5	4
100	Visualization of the Nipple in Profile: Does It Really Affect Selected Outcomes in Organized Mammographic Screening?. Journal of Breast Imaging, 2021, 3, 427-437.	1.3	4
101	Self-reported symptoms among participants in a population-based screening program. Breast, 2020, 54, 56-61.	2.2	3
102	Organisert mammografiscreening - flere fordeler enn ulemper. Tidsskrift for Den Norske Laegeforening, 2013, 133, 619-620.	0.2	3
103	Standardised or individualised X-ray tube angle for mediolateral oblique projection in digital mammography?. Radiography, 2022, , .	2.1	3
104	Time of day and mammographic reader performance in a population-based breast cancer screening programme. Journal of Medical Screening, 2021, 28, 295-301.	2.3	2
105	A Warning about Warning Signals for Interpreting Mammograms. Radiology, 2022, 302, 284-285.	7.3	2
106	Costs and Effects of Implementing Digital Tomosynthesis in a Population-Based Breast Cancer Screening Program: Predictions Using Results from the To-Be Trial in Norway. PharmacoEconomics - Open, 2022, 6, 495-507.	1.8	2
107	Optimizing performance of BreastScreen Norway using value of information in graphical models. Statistics in Medicine, 2018, 37, 1531-1549.	1.6	1
108	Screening at stationary versus mobile units in BreastScreen Norway. Journal of Medical Screening, 2020, 27, 31-39.	2.3	1

SOLVEIG HOFVIND

#	Article	IF	CITATION
109	Patterns of aggressiveness: risk of progression to invasive breast cancer by mammographic features of calcifications in screen-detected ductal carcinoma in situ. Acta Radiologica, 2022, 63, 586-595.	1.1	1
110	Self-reported Pain Associated With Screening With Digital Breast Tomosynthesis. Journal of Breast Imaging, 2021, 3, 25-33.	1.3	1
111	Early screening outcomes among non-immigrants and immigrants targeted by BreastScreen Norway, 2010–2019. Scandinavian Journal of Public Health, 2022, , 140349482210787.	2.3	1
112	Women's conceptual knowledge about breast cancer screening and overdiagnosis in Norway: a cross-sectional study. BMJ Open, 2021, 11, e052121.	1.9	1
113	Participation and cancer detection after reminders versus ordinary invitations in BreastScreen Norway. Journal of Medical Screening, 2022, 29, 178-184.	2.3	1
114	Response to Zahl. Journal of the National Cancer Institute, 2020, 112, 1175-1175.	6.3	0
115	Number of prior negative screening outcomes does not influence future risk of breast cancer. European Journal of Epidemiology, 2020, 35, 549-556.	5.7	O
116	Detection and significance of small and low proliferation breast cancer. Journal of Medical Screening, 2021, , 096914132110239.	2.3	O