
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7266187/publications.pdf Version: 2024-02-01

Ρειμίια Υλης

#	Article	IF	CITATIONS
1	Printed Zinc Paper Batteries. Advanced Science, 2022, 9, e2103894.	11.2	42
2	Stable Zinc Anodes Enabled by a Zincophilic Polyanionic Hydrogel Layer. Advanced Materials, 2022, 34, e2202382.	21.0	168
3	3D zincophilic micro-scaffold enables stable Zn deposition. Energy Storage Materials, 2022, 51, 259-265.	18.0	42
4	Boosting alkaline water electrolysis by asymmetric temperature modulation. Applied Physics Letters, 2021, 119, .	3.3	2
5	Bilayer porous polymer for efficient passive building cooling. Nano Energy, 2021, 85, 105971.	16.0	123
6	Radiant air-conditioning with infrared transparent polyethylene aerogel. Materials Today Energy, 2021, 21, 100800.	4.7	10
7	Highâ€Resolution Inkjet Printing of Quantum Dot Lightâ€Emitting Microdiode Arrays. Advanced Optical Materials, 2020, 8, 1901429.	7.3	145
8	Inkjet and Extrusion Printing for Electrochemical Energy Storage: A Minireview. Advanced Materials Technologies, 2020, 5, .	5.8	51
9	Thermal Selfâ€Protection of Zincâ€ion Batteries Enabled by Smart Hygroscopic Hydrogel Electrolytes. Advanced Energy Materials, 2020, 10, 2002898.	19.5	102
10	Electrochemical Impedance Analysis of Thermogalvanic Cells. Chemical Research in Chinese Universities, 2020, 36, 420-424.	2.6	9
11	Flexible Pseudocapacitive Electrochromics via Inkjet Printing of Additiveâ€Free Tungsten Oxide Nanocrystal Ink. Advanced Energy Materials, 2020, 10, 2000142.	19.5	82
12	Ultraviolet light–assisted electrokinetic conversion based on TiO2 electrodes. Materials Today Energy, 2020, 18, 100517.	4.7	3
13	Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy, 2019, 58, 797-802.	16.0	145
14	P-N conversion in thermogalvanic cells induced by thermo-sensitive nanogels for body heat harvesting. Nano Energy, 2019, 57, 473-479.	16.0	89
15	Electricity generation from water droplets via capillary infiltrating. Nano Energy, 2018, 48, 211-216.	16.0	94
16	Tough hydrogel diodes with tunable interfacial adhesion for safe and durable wearable batteries. Nano Energy, 2018, 48, 569-574.	16.0	63
17	Electrokinetic Supercapacitor for Simultaneous Harvesting and Storage of Mechanical Energy. ACS Applied Materials & Interfaces, 2018, 10, 8010-8015.	8.0	29
18	Thermal–Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film. Advanced Energy Materials, 2018, 8, 1702481.	19.5	111

#	Article	IF	CITATIONS
19	Aqueous thermogalvanic cells with a high Seebeck coefficient for low-grade heat harvest. Nature Communications, 2018, 9, 5146.	12.8	255
20	Highly Efficient Water Harvesting with Optimized Solar Thermal Membrane Distillation Device. Global Challenges, 2018, 2, 1800001.	3.6	108
21	Evaporation induced electricity generation in freestanding and flexible carbon-based hybrid film. Chinese Science Bulletin, 2018, 63, 2846-2852.	0.7	9
22	Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation. ACS Applied Materials & Interfaces, 2017, 9, 15052-15057.	8.0	463
23	Solar-driven simultaneous steam production and electricity generation from salinity. Energy and Environmental Science, 2017, 10, 1923-1927.	30.8	380
24	A 2.0 V capacitive device derived from shape-preserved metal nitride nanorods. Nano Energy, 2016, 26, 1-6.	16.0	31
25	Ultrafastâ€Charging Supercapacitors Based on Cornâ€Like Titanium Nitride Nanostructures. Advanced Science, 2016, 3, 1500299.	11.2	163
26	Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Angewandte Chemie, 2016, 128, 12229-12232.	2.0	44
27	Wearable Thermocells Based on Gel Electrolytes for the Utilization of Body Heat. Angewandte Chemie - International Edition, 2016, 55, 12050-12053.	13.8	210
28	Selfâ€Powered Multimodal Temperature and Force Sensor Basedâ€On a Liquid Droplet. Angewandte Chemie - International Edition, 2016, 55, 15864-15868.	13.8	32
29	Selfâ€Powered Multimodal Temperature and Force Sensor Basedâ€On a Liquid Droplet. Angewandte Chemie, 2016, 128, 16096-16100.	2.0	4
30	Array of nanosheets render ultrafast and high-capacity Na-ion storage by tunable pseudocapacitance. Nature Communications, 2016, 7, 12122.	12.8	1,232
31	Flexible microfluidics nanogenerator based on the electrokinetic conversion. Nano Energy, 2016, 30, 684-690.	16.0	50
32	Induced Potential in Porous Carbon Films through Water Vapor Absorption. Angewandte Chemie - International Edition, 2016, 55, 8003-8007.	13.8	170
33	Band gap engineering of MnO ₂ through in situ Al-doping for applicable pseudocapacitors. RSC Advances, 2016, 6, 13914-13919.	3.6	56
34	Electrochromic energy storage devices. Materials Today, 2016, 19, 394-402.	14.2	415
35	All Metal Nitrides Solid tate Asymmetric Supercapacitors. Advanced Materials, 2015, 27, 4566-4571.	21.0	371
36	Flexible supercapacitors based on carbon nanotube/MnO2 nanotube hybrid porous films for wearable electronic devices. , 2015, , .		0

#	Article	IF	CITATIONS
37	Quantitative Analysis of Charge Storage Process of Tungsten Oxide that Combines Pseudocapacitive and Electrochromic Properties. Journal of Physical Chemistry C, 2015, 119, 16483-16489.	3.1	93
38	Freestanding CNT–WO ₃ hybrid electrodes for flexible asymmetric supercapacitors. Journal of Materials Chemistry A, 2015, 3, 12076-12080.	10.3	101
39	Significantly enhanced robustness and electrochemical performance of flexible carbon nanotube-based supercapacitors by electrodepositing polypyrrole. Journal of Power Sources, 2015, 287, 68-74.	7.8	150
40	Heterogeneous Nanostructures for Sodium Ion Batteries and Supercapacitors. ChemNanoMat, 2015, 1, 458-476.	2.8	28
41	Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. Journal of Materials Chemistry A, 2015, 3, 20614-20618.	10.3	119
42	Large-Scale Fabrication of Pseudocapacitive Glass Windows that Combine Electrochromism and Energy Storage. , 2015, , .		0
43	General strategy for improving dye-sensitized solar cells by using sub-micrometer cavities. Journal of Alloys and Compounds, 2014, 583, 300-304.	5.5	5
44	Low-Cost High-Performance Solid-State Asymmetric Supercapacitors Based on MnO ₂ Nanowires and Fe ₂ O ₃ Nanotubes. Nano Letters, 2014, 14, 731-736.	9.1	1,035
45	Worm-like amorphous MnO2nanowires grown on textiles for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 2014, 2, 595-599.	10.3	120
46	Flexible solid-state electrochemical supercapacitors. Nano Energy, 2014, 8, 274-290.	16.0	734
47	Large cale Fabrication of Pseudocapacitive Glass Windows that Combine Electrochromism and Energy Storage. Angewandte Chemie - International Edition, 2014, 53, 11935-11939.	13.8	207
48	Flexible supercapacitors based on carbon nanotube/MnO ₂ nanotube hybrid porous films for wearable electronic devices. Journal of Materials Chemistry A, 2014, 2, 17561-17567.	10.3	132
49	Reciprocal alternate deposition strategy using metal oxide/carbon nanotube for positive and negative electrodes of high-performance supercapacitors. Nano Energy, 2014, 10, 108-116.	16.0	60
50	Significantly Enhanced Photocatalytic Activities and Charge Separation Mechanism of Pd-Decorated ZnO–Graphene Oxide Nanocomposites. ACS Applied Materials & Interfaces, 2014, 6, 3623-3629.	8.0	129
51	Role of graphene in great enhancement of photocatalytic activity of ZnO nanoparticle–graphene hybrids. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 47, 279-284.	2.7	43
52	Hydrogenated ZnO Core–Shell Nanocables for Flexible Supercapacitors and Self-Powered Systems. ACS Nano, 2013, 7, 2617-2626.	14.6	781
53	TiO ₂ nanowires for potential facile integration of solar cells and electrochromic devices. Nanotechnology, 2013, 24, 435403.	2.6	32
54	Mechanical and electrical characterization of semiconducting ZnO nanorings by direct nano-manipulation. Applied Physics Letters, 2012, 101, 081910.	3.3	17

#	Article	IF	CITATIONS
55	Morphology-controllable ZnOnanotubes and nanowires: synthesis, growth mechanism and hydrophobic property. CrystEngComm, 2012, 14, 1723-1728.	2.6	16
56	Fabrication of n-type ZnO nanowire/graphene/p-type silicon hybrid structures and electrical properties of heterojunctions. Physical Chemistry Chemical Physics, 2012, 14, 16111.	2.8	20
57	Fiber-Based All-Solid-State Flexible Supercapacitors for Self-Powered Systems. ACS Nano, 2012, 6, 9200-9206.	14.6	596
58	Enhanced wettability performance of ultrathin ZnO nanotubes by coupling morphology and size effects. Nanoscale, 2012, 4, 5755.	5.6	36
59	Room-Temperature Ultraviolet Nanowire Nanolasers. Science, 2001, 292, 1897-1899.	12.6	8,567