gerolama condorelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7265809/publications.pdf

Version: 2024-02-01

74 6,530 41 74 papers citations h-index 9-index

78 78 78 78 9444

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	MicroRNA signatures of TRAIL resistance in human non-small cell lung cancer. Oncogene, 2008, 27, 3845-3855.	2.6	275
2	Renal Insufficiency After Contrast Media Administration Trial II (REMEDIAL II). Circulation, 2011, 124, 1260-1269.	1.6	217
3	Apoptosis resistance in epithelial tumors is mediated by tumor-cell-derived interleukin-4. Cell Death and Differentiation, 2008, 15, 762-772.	5.0	191
4	Contrast agents and renal cell apoptosis. European Heart Journal, 2008, 29, 2569-2576.	1.0	187
5	miR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene, 2012, 31, 634-642.	2.6	181
6	PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis. Oncogene, 1999, 18, 4409-4415.	2.6	168
7	miR-340 inhibits tumor cell proliferation and induces apoptosis by targeting multiple negative regulators of p27 in non-small cell lung cancer. Oncogene, 2015, 34, 3240-3250.	2.6	167
8	Impact of a High Loading Dose of Atorvastatin on Contrast-Induced Acute Kidney Injury. Circulation, 2012, 126, 3008-3016.	1.6	164
9	miR-221/222 overexpession in human glioblastoma increases invasiveness by targeting the protein phosphate PTPÎ $\frac{1}{4}$. Oncogene, 2012, 31, 858-868.	2.6	163
10	PED/PEA-15 gene controls glucose transport and is overexpressed in type 2 diabetes mellitus. EMBO Journal, 1998, 17, 3858-3866.	3.5	157
11	MiR-494 is regulated by ERK1/2 and modulates TRAIL-induced apoptosis in non–small-cell lung cancer through BIM down-regulation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16570-16575.	3.3	150
12	Multifunctional Aptamer-miRNA Conjugates for Targeted Cancer Therapy. Molecular Therapy, 2014, 22, 1151-1163.	3.7	150
13	Insulin-like Growth Factor-I Receptor Internalization Regulates Signaling via the Shc/Mitogen-activated Protein Kinase Pathway, but Not the Insulin Receptor Substrate-1 Pathway. Journal of Biological Chemistry, 1998, 273, 4672-4680.	1.6	143
14	miR-212 Increases Tumor Necrosis Factor–Related Apoptosis-Inducing Ligand Sensitivity in Non–Small Cell Lung Cancer by Targeting the Antiapoptotic Protein PED. Cancer Research, 2010, 70, 3638-3646.	0.4	143
15	A Neutralizing RNA Aptamer against EGFR Causes Selective Apoptotic Cell Death. PLoS ONE, 2011, 6, e24071.	1.1	141
16	Protein Kinase B/Akt Binds and Phosphorylates PED/PEA-15, Stabilizing Its Antiapoptotic Action. Molecular and Cellular Biology, 2003, 23, 4511-4521.	1.1	128
17	Akt Mediates the Cross-Talk Between \hat{l}^2 -Adrenergic and Insulin Receptors in Neonatal Cardiomyocytes. Circulation Research, 2005, 96, 180-188.	2.0	124
18	Inhibition of Receptor Signaling and of Glioblastoma-derived Tumor Growth by a Novel PDGFR \hat{l}^2 Aptamer. Molecular Therapy, 2014, 22, 828-841.	3.7	118

#	Article	IF	Citations
19	Electrochemical detection of miRNA-222 by use of a magnetic bead-based bioassay. Analytical and Bioanalytical Chemistry, 2013, 405, 1025-1034.	1.9	113
20	The Role of Exo-miRNAs in Cancer: A Focus on Therapeutic and Diagnostic Applications. International Journal of Molecular Sciences, 2019, 20, 4687.	1.8	111
21	Autocrine Production of Interleukin-4 and Interleukin-10 Is Required for Survival and Growth of Thyroid Cancer Cells. Cancer Research, 2006, 66, 1491-1499.	0.4	110
22	In vivo and in vitro assessment of pathways involved in contrast media-induced renal cells apoptosis. Cell Death and Disease, 2011, 2, e155-e155.	2.7	109
23	MicroRNAs as regulators of death receptors signaling. Cell Death and Differentiation, 2010, 17, 200-208.	5.0	107
24	Effect of miR-21 and miR-30b/c on TRAIL-induced apoptosis in glioma cells. Oncogene, 2013, 32, 4001-4008.	2.6	102
25	Absence of Caspase 8 and High Expression of PED Protect Primitive Neural Cells from Cell Death. Journal of Experimental Medicine, 2004, 200, 1257-1266.	4.2	101
26	miR-34c may protect lung cancer cells from paclitaxel-induced apoptosis. Oncogene, 2013, 32, 341-351.	2.6	88
27	miR-221/222 Target the DNA Methyltransferase MGMT in Glioma Cells. PLoS ONE, 2013, 8, e74466.	1.1	84
28	Comparison of Coronary Drug-Eluting Stents Versus Coronary Artery Bypass Grafting in Patients With Diabetes Mellitus. American Journal of Cardiology, 2007, 99, 779-784.	0.7	80
29	Correlations between progression of coronary artery disease and circulating endothelial progenitor cells. FASEB Journal, 2010, 24, 1981-1988.	0.2	80
30	Ranolazine protects from doxorubicinâ€induced oxidative stress and cardiac dysfunction. European Journal of Heart Failure, 2014, 16, 358-366.	2.9	76
31	Epigenetic Regulation of miR-212 Expression in Lung Cancer. PLoS ONE, 2011, 6, e27722.	1.1	75
32	TNF $\hat{a}\in\hat{l}_{\pm}$ signal transduction in rat neonatal cardiac myocytes: definition of pathways generating from the TNF $\hat{a}\in\hat{l}_{\pm}$ receptor. FASEB Journal, 2002, 16, 1732-1737.	0.2	73
33	MicroRNAs in diseases and drug response. Current Opinion in Pharmacology, 2008, 8, 661-667.	1.7	69
34	Insulin-Activated Protein Kinase CÎ ² Bypasses Ras and Stimulates Mitogen-Activated Protein Kinase Activity and Cell Proliferation in Muscle Cells. Molecular and Cellular Biology, 2000, 20, 6323-6333.	1.1	68
35	PED Mediates AKT-Dependent Chemoresistance in Human Breast Cancer Cells. Cancer Research, 2005, 65, 6668-6675.	0.4	56
36	Multiple Members of the Mitogen-activated Protein Kinase Family Are Necessary for PED/PEA-15 Anti-apoptotic Function. Journal of Biological Chemistry, 2002, 277, 11013-11018.	1.6	47

#	Article	IF	Citations
37	In NIH-3T3 Fibroblasts, Insulin Receptor Interaction with Specific Protein Kinase C Isoforms Controls Receptor Intracellular Routing. Journal of Biological Chemistry, 1998, 273, 13197-13202.	1.6	44
38	Aptamer-miR-34c Conjugate Affects Cell Proliferation of Non-Small-Cell Lung Cancer Cells. Molecular Therapy - Nucleic Acids, 2018, 13, 334-346.	2.3	43
39	Phosphorylationâ€Regulated Degradation of the Tumorâ€Suppressor Form of PED by Chaperoneâ€Mediated Autophagy in Lung Cancer Cells. Journal of Cellular Physiology, 2014, 229, 1359-1368.	2.0	42
40	Nephrotoxicity of contrast media and protective effects of acetylcysteine. Archives of Toxicology, 2011, 85, 165-173.	1.9	41
41	Novel Approaches for Preventing or Limiting Events in Diabetic Patients (Naples-Diabetes) Trial. Circulation: Cardiovascular Interventions, 2011, 4, 121-129.	1.4	41
42	Novel Biomarkers for Contrast-Induced Acute Kidney Injury. BioMed Research International, 2014, 2014, 1-5.	0.9	41
43	PED is overexpressed and mediates TRAIL resistance in human nonâ€small cell lung cancer. Journal of Cellular and Molecular Medicine, 2008, 12, 2416-2426.	1.6	36
44	Elevated Expression of the Tyrosine Phosphatase SHP-1 Defines a Subset of High-Grade Breast Tumors. Oncology, 2009, 77, 378-384.	0.9	35
45	Differential Role of Insulin Receptor Substrate (IRS)-1 and IRS-2 in L6 Skeletal Muscle Cells Expressing the Arg1152 â†' Gln Insulin Receptor. Journal of Biological Chemistry, 1999, 274, 3094-3102.	1.6	34
46	Selective inhibition of PED protein expression sensitizes B-cell chronic lymphocytic leukaemia cells to TRAIL-induced apoptosis. International Journal of Cancer, 2007, 120, 1215-1222.	2.3	34
47	Aptamer Chimeras for Therapeutic Delivery: The Challenging Perspectives. Genes, 2018, 9, 529.	1.0	33
48	The Discovery of RNA Aptamers that Selectively Bind Glioblastoma Stem Cells. Molecular Therapy - Nucleic Acids, 2019, 18, 99-109.	2.3	33
49	In L6 Skeletal Muscle Cells, Glucose Induces Cytosolic Translocation of Protein Kinase C-α and Trans-activates the Insulin Receptor Kinase. Journal of Biological Chemistry, 1999, 274, 28637-28644.	1.6	32
50	c-FLIPL enhances anti-apoptotic Akt functions by modulation of Gsk3 \hat{l}^2 activity. Cell Death and Differentiation, 2010, 17, 1908-1916.	5.0	32
51	Potential and Challenges of Aptamers as Specific Carriers of Therapeutic Oligonucleotides for Precision Medicine in Cancer. Cancers, 2019, 11, 1521.	1.7	29
52	Targeting Ephrin Receptor Tyrosine Kinase A2 with a Selective Aptamer for Glioblastoma Stem Cells. Molecular Therapy - Nucleic Acids, 2020, 20, 176-185.	2.3	29
53	Identification of a novel RNA aptamer that selectively targets breast cancer exosomes. Molecular Therapy - Nucleic Acids, 2021, 23, 982-994.	2.3	29
54	In Skeletal Muscle, Glucose Storage and Oxidation Are Differentially Impaired by the IR1152 Mutant Receptor. Journal of Biological Chemistry, 1997, 272, 7290-7297.	1.6	25

#	Article	IF	CITATIONS
55	Assessment of the 9p21.3 locus in severity of coronary artery disease in the presence and absence of type 2 diabetes. BMC Medical Genetics, 2013, 14, 11.	2.1	24
56	Contrast-induced acute kidney injury. Current Opinion in Nephrology and Hypertension, 2015, 24, 145-153.	1.0	23
57	Renal insufficiency following contrast media administration trial II (REMEDIAL II): RenalGuard system in high-risk patients for contrast-induced acute kidney injury: rationale and design. EuroIntervention, 2011, 6, 1117-1122.	1.4	22
58	Therapeutic strategies to prevent contrast-induced acute kidney injury. Current Opinion in Cardiology, 2013, 28, 676-682.	0.8	20
59	Akt Regulates Drug-Induced Cell Death through Bcl-w Downregulation. PLoS ONE, 2008, 3, e4070.	1.1	20
60	Sirolimus-eluting stent implantation in diabetic patients with multivessel coronary artery disease. American Heart Journal, 2005, 150, 807-813.	1.2	18
61	Impact of microvascular complications on outcome after coronary stent implantations in patients with diabetes. Journal of the American College of Cardiology, 2005, 45, 464-466.	1.2	18
62	PED interacts with Rac1 and regulates cell migration/invasion processes in human nonâ€small cell lung cancer cells. Journal of Cellular Physiology, 2010, 225, 63-72.	2.0	18
63	Urinary Dickkopf-3 and Contrast-Associated Kidney Damage. Journal of the American College of Cardiology, 2021, 77, 2667-2676.	1.2	18
64	Relation of Various Plasma Growth Factor Levels in Patients With Stable Angina Pectoris and Total Occlusion of a Coronary Artery to the Degree of Coronary Collaterals. American Journal of Cardiology, 2006, 97, 472-476.	0.7	17
65	"ApoptomiRs―in vascular cells: Their role in physiological and pathological angiogenesis. Vascular Pharmacology, 2011, 55, 87-91.	1.0	16
66	Hydration in contrast-induced acute kidney injury. Lancet, The, 2014, 383, 1786-1788.	6.3	13
67	miR-34c-3p targets CDK1 a synthetic lethality partner of KRAS in non-small cell lung cancer. Cancer Gene Therapy, 2021, 28, 413-426.	2.2	13
68	Shp2 in PC12 cells: NGF versus EGF signalling. Cellular Signalling, 2007, 19, 1193-1200.	1.7	12
69	Endothelial progenitor cells in coronary artery disease. Biological Chemistry, 2013, 394, 1241-1252.	1.2	7
70	Vitamin D ₃ signalling in the brain enhances the function of phosphoprotein enriched in astrocytes – 15 kD (PEAâ€15). Journal of Cellular and Molecular Medicine, 2009, 13, 3315-3328.	1.6	5
71	Statins and contrast-induced acute kidney injury. Coronary Artery Disease, 2014, 25, 550-551.	0.3	1
72	Arresting the Colonial Destiny of Metastatic Seeds with DNA Aptamers. Molecular Therapy, 2015, 23, 982-984.	3.7	1

#	Article	lF	CITATIONS
73	Insulin-Activated Protein Kinase CÎ ² Bypasses Ras and Stimulates Mitogen-Activated Protein Kinase Activity and Cell Proliferation in Muscle Cells. Molecular and Cellular Biology, 2013, 33, 1474-1474.	1.1	0
74	Endothelial Progenitor Cells and Percutaneous Coronary Artery Intervention. Cardiovascular Drugs and Therapy, 2015, 29, 105-106.	1.3	0