

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7265675/publications.pdf Version: 2024-02-01

YANC XII

#	Article	IF	CITATIONS
1	Highly nitrogen doped carbon nanofibers with superior rate capability and cyclability for potassium ion batteries. Nature Communications, 2018, 9, 1720.	5.8	871
2	Potassium Prussian Blue Nanoparticles: A Lowâ€Cost Cathode Material for Potassiumâ€lon Batteries. Advanced Functional Materials, 2017, 27, 1604307.	7.8	411
3	Growth of p-Type Hematite by Atomic Layer Deposition and Its Utilization for Improved Solar Water Splitting. Journal of the American Chemical Society, 2012, 134, 5508-5511.	6.6	368
4	Extended π-Conjugated System for Fast-Charge and -Discharge Sodium-Ion Batteries. Journal of the American Chemical Society, 2015, 137, 3124-3130.	6.6	361
5	Novel Metastable Hexagonal MoO ₃ Nanobelts: Synthesis, Photochromic, and Electrochromic Properties. Chemistry of Materials, 2009, 21, 5681-5690.	3.2	353
6	Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. Chemical Communications, 2013, 49, 8973.	2.2	348
7	Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. Energy and Environmental Science, 2015, 8, 2954-2962.	15.6	294
8	Photoelectrodes Based upon Mo:BiVO ₄ Inverse Opals for Photoelectrochemical Water Splitting. ACS Nano, 2014, 8, 7088-7098.	7.3	289
9	Organic materials for rechargeable sodium-ion batteries. Materials Today, 2018, 21, 60-78.	8.3	228
10	Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies. Angewandte Chemie - International Edition, 2015, 54, 8768-8771.	7.2	180
11	Nanoarchitectured Array Electrodes for Rechargeable Lithium―and Sodium―on Batteries. Advanced Energy Materials, 2016, 6, 1502514.	10.2	169
12	Nearly Monodisperse CuInS ₂ Hierarchical Microarchitectures for Photocatalytic H ₂ Evolution under Visible Light. Inorganic Chemistry, 2009, 48, 4003-4009.	1.9	153
13	Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities. Nanotechnology, 2006, 17, 2560-2566.	1.3	151
14	Manipulation of Disodium Rhodizonate: Factors for Fastâ€Charge and Fastâ€Discharge Sodiumâ€Ion Batteries with Longâ€Term Cyclability. Advanced Functional Materials, 2016, 26, 1777-1786.	7.8	149
15	Highly Ordered Three-Dimensional Ni-TiO ₂ Nanoarrays as Sodium Ion Battery Anodes. Chemistry of Materials, 2015, 27, 4274-4280.	3.2	140
16	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie - International Edition, 2020, 59, 13320-13327.	7.2	127
17	Well-aligned molybdenum oxide nanorods on metal substrates: solution-based synthesis and their electrochemical capacitor application. Journal of Materials Chemistry, 2010, 20, 7135.	6.7	119
18	New-phase VO2 micro/nanostructures: investigation of phase transformation and magnetic property. New Journal of Chemistry, 2012, 36, 619-625.	1.4	108

Yang Xu

#	Article	IF	CITATIONS
19	Enhancing potassium-ion battery performance by defect and interlayer engineering. Nanoscale Horizons, 2019, 4, 202-207.	4.1	105
20	Amorphous TiO 2 inverse opal anode for high-rate sodium ion batteries. Nano Energy, 2017, 31, 514-524.	8.2	103
21	Pillar effect on cyclability enhancement for aqueous lithium ion batteries: a new material of β-vanadium bronze M0.33V2O5 (M = Ag, Na) nanowires. Journal of Materials Chemistry, 2011, 21, 14466.	6.7	101
22	Self‣upported Metallic Nanopore Arrays with Highly Oriented Nanoporous Structures as Ideally Nanostructured Electrodes for Supercapacitor Applications. Advanced Materials, 2014, 26, 7654-7659.	11.1	97
23	Oxygen vacancies: Effective strategy to boost sodium storage of amorphous electrode materials. Nano Energy, 2017, 38, 304-312.	8.2	92
24	Topochemistryâ€Driven Synthesis of Transitionâ€Metal Selenides with Weakened Van Der Waals Force to Enable 3Dâ€Printed Naâ€ion Hybrid Capacitors. Advanced Functional Materials, 2022, 32, .	7.8	91
25	A Selectively Permeable Membrane for Enhancing Cyclability of Organic Sodiumâ€lon Batteries. Advanced Materials, 2016, 28, 9182-9187.	11.1	77
26	Unexpected intercalation-dominated potassium storage in WS2 as a potassium-ion battery anode. Nano Research, 2019, 12, 2997-3002.	5.8	77
27	Plasma-Introduced Oxygen Defects Confined in Li ₄ Ti ₅ O ₁₂ Nanosheets for Boosting Lithium-Ion Diffusion. ACS Applied Materials & Interfaces, 2019, 11, 17384-17392.	4.0	72
28	Polyanilineâ€Intercalated Molybdenum Oxide Nanocomposites: Simultaneous Synthesis and their Enhanced Application for Supercapacitor. Chemistry - an Asian Journal, 2011, 6, 1505-1514.	1.7	71
29	Heterogeneous nanostructure array for electrochemical energy conversion and storage. Nano Today, 2018, 20, 33-57.	6.2	68
30	Newâ€Phased Metastable V ₂ O ₃ Porous Urchinlike Micronanostructures: Facile Synthesis and Application in Aqueous Lithium Ion Batteries. Chemistry - A European Journal, 2011, 17, 384-391.	1.7	66
31	Insights into the Crystallinity of Layer‣tructured Transition Metal Dichalcogenides on Potassium Ion Battery Performance: A Case Study of Molybdenum Disulfide. Small, 2019, 15, e1900497.	5.2	62
32	From synthetic montroseite VOOH to topochemical paramontroseite VO2 and their applications in aqueous lithium ion batteries. Dalton Transactions, 2010, 39, 10729.	1.6	61
33	CuMnO2-reduced graphene oxide nanocomposite as a free-standing electrode for high-performance supercapacitors. Chemical Engineering Journal, 2019, 375, 121966.	6.6	61
34	Self-Supported Bi ₂ MoO ₆ Nanowall for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2017, 9, 23647-23653.	4.0	59
35	Ammonium Vanadium Bronze as a Potassiumâ€lon Battery Cathode with High Rate Capability and Cyclability. Small Methods, 2019, 3, 1800349.	4.6	58
36	Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage. Journal of Materials Chemistry A, 2017, 5, 1749-1755.	5.2	55

Yang Xu

#	Article	IF	CITATIONS
37	Understanding the Orderliness of Atomic Arrangement toward Enhanced Sodium Storage. Advanced Energy Materials, 2016, 6, 1600448.	10.2	52
38	Progress and perspectives on alloying-type anode materials for advanced potassium-ion batteries. Materials Today, 2021, 48, 241-269.	8.3	51
39	Tuning the nitrogen-doping configuration in carbon materials <i>via</i> sulfur doping for ultrastable potassium ion storage. Journal of Materials Chemistry A, 2021, 9, 16150-16159.	5.2	50
40	Three-Dimensional Plasmonic Nanostructure Design for Boosting Photoelectrochemical Activity. ACS Nano, 2017, 11, 7382-7389.	7.3	48
41	Bismuth oxychloride nanoflake assemblies as a new anode for potassium ion batteries. Chemical Communications, 2019, 55, 6507-6510.	2.2	47
42	Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. Nano Research, 2017, 10, 3189-3201.	5.8	45
43	Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor. Nano Energy, 2020, 72, 104661.	8.2	42
44	Carrier Mobility-Dominated Gas Sensing: A Room-Temperature Gas-Sensing Mode for SnO ₂ Nanorod Array Sensors. ACS Applied Materials & Interfaces, 2018, 10, 13895-13902.	4.0	41
45	MoS ₂ nanosheets with expanded interlayer spacing for enhanced sodium storage. Inorganic Chemistry Frontiers, 2018, 5, 3099-3105.	3.0	41
46	Polyimide@Ketjenblack Composite: A Porous Organic Cathode for Fast Rechargeable Potassiumâ€ l on Batteries. Small, 2020, 16, e2002953.	5.2	40
47	Selected-control solution-phase route to multiple-dendritic and cuboidal structures of PbSe. Journal of Solid State Chemistry, 2006, 179, 56-61.	1.4	33
48	The role of oxygen vacancies in metal oxides for rechargeable ion batteries. Science China Chemistry, 2021, 64, 1826-1853.	4.2	33
49	First investigation on charge-discharge reaction mechanism of aqueous lithium ion batteries: a new anode material of Ag2V4O11 nanobelts. Dalton Transactions, 2011, 40, 10751.	1.6	30
50	First-order metal–insulator transition and infrared identification of shape-controlled magnetite nanocrystals. Nanotechnology, 2011, 22, 485706.	1.3	29
51	Carbon materials for Na-S and K-S batteries. Matter, 2022, 5, 808-836.	5.0	27
52	Optimizing the Interlayer Spacing of Heteroatom-Doped Carbon Nanofibers toward Ultrahigh Potassium-Storage Performances. ACS Applied Materials & Interfaces, 2022, 14, 9212-9221.	4.0	27
53	Intertwined Cu3V2O7(OH)2·2H2O nanowires/carbon fibers composite: A new anode with high rate capability for sodium-ion batteries. Journal of Power Sources, 2015, 294, 193-200.	4.0	26
54	Boosting the K ⁺ -adsorption capacity in edge-nitrogen doped hierarchically porous carbon spheres for ultrastable potassium ion battery anodes. Nanoscale, 2021, 13, 19634-19641.	2.8	22

Yang Xu

#	Article	IF	CITATIONS
55	Enhanced Potassium Storage Capability of Two-Dimensional Transition-Metal Chalcogenides Enabled by a Collective Strategy. ACS Applied Materials & Interfaces, 2021, 13, 18838-18848.	4.0	21
56	Sensitive Gas-Sensing by Creating Adsorption Active Sites: Coating an SnO ₂ Layer on Triangle Arrays. ACS Applied Materials & Interfaces, 2018, 10, 29092-29099.	4.0	20
57	Engineering metal selenides for sodium-and potassium-ion batteries. Cell Reports Physical Science, 2021, 2, 100555.	2.8	20
58	Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays. Nanotechnology, 2017, 28, 405501.	1.3	19
59	Electrical Conductivity Adjustment for Interface Capacitiveâ€Like Storage in Sodiumâ€Ion Battery. Advanced Functional Materials, 2021, 31, 2101081.	7.8	19
60	N ₂ Electroreduction to NH ₃ by Selenium Vacancyâ€Rich ReSe ₂ Catalysis at an Abrupt Interface. Angewandte Chemie, 2020, 132, 13422-13429.	1.6	18
61	Effective Design Strategy of Small Bipolar Molecules through Fused Conjugation toward 2.5 V Based Redox Flow Batteries. ACS Energy Letters, 2022, 7, 1274-1283.	8.8	18
62	Squaraine organic crystals with strong dipole effect toward stable lithium-organic batteries. Energy Storage Materials, 2021, 41, 240-247.	9.5	16
63	Pyrrhotite Fe1â^'xS microcubes as a new anode material in potassium-ion batteries. Microsystems and Nanoengineering, 2020, 6, 75.	3.4	12
64	Phenothiazine-based copolymer with redox functional backbones for organic battery cathode materials. Materials Today Energy, 2021, 21, 100812.	2.5	12
65	Morphology Control of CdSe Submicrostructures with High Hierarchy in Solution. European Journal of Inorganic Chemistry, 2006, 2006, 4349-4354.	1.0	9
66	Heterostructures with ZnSe Sheaths Coating on Carbon Submicrotubes:Â Preparation, Characterization, and Formation Mechanism. Journal of Physical Chemistry B, 2006, 110, 14186-14191.	1.2	8
67	Vectorial Diffusion for Facile Solutionâ€Processed Selfâ€Assembly of Insoluble Semiconductors: A Case Study on Metal Phthalocyanines. Chemistry - A European Journal, 2014, 20, 10990-10995.	1.7	8
68	A <i>Ï€</i> onjugated Polyimideâ€Based Highâ€Performance Aqueous Potassiumâ€Ion Asymmetric Supercapacitor. Macromolecular Rapid Communications, 2022, 43, e2200040.	2.0	8
69	Tuning the electronic conductivity of porous nitrogen-doped carbon nanofibers with graphene for high-performance potassium-ion storage. Inorganic Chemistry Frontiers, 2021, 8, 3926-3933.	3.0	7
70	Interphases in the electrodes of potassium ion batteries. JPhys Materials, 2022, 5, 022001.	1.8	4
71	Hybrid nanostructures for electrochemical potassium storage. Nanoscale Advances, 2021, 3, 5442-5464.	2.2	2