Shitong Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7265513/publications.pdf

Version: 2024-02-01

70961 102304 6,748 66 41 66 citations h-index g-index papers 68 68 68 5660 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Efficient Nearâ€Infrared Organic Lightâ€Emitting Diode Based on a Butterflyâ€Shaped Donor–Acceptor Chromophore with Strong Solidâ€State Fluorescence and a Large Proportion of Radiative Excitons. Angewandte Chemie - International Edition, 2014, 53, 2119-2123.	7.2	604
2	Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C, 2015, 3, 5976-5984.	2.7	599
3	Employing â^¼100% Excitons in OLEDs by Utilizing a Fluorescent Molecule with Hybridized Local and Charge‶ransfer Excited State. Advanced Functional Materials, 2014, 24, 1609-1614.	7.8	527
4	Achieving a Significantly Increased Efficiency in Nondoped Pure Blue Fluorescent OLED: A Quasiâ€Equivalent Hybridized Excited State. Advanced Functional Materials, 2015, 25, 1755-1762.	7.8	381
5	A Hybridized Local and Chargeâ€Transfer Excited State for Highly Efficient Fluorescent OLEDs: Molecular Design, Spectral Character, and Full Exciton Utilization. Advanced Optical Materials, 2014, 2, 892-901.	3.6	357
6	Achieving Persistent, Efficient, and Robust Roomâ€Temperature Phosphorescence from Pure Organics for Versatile Applications. Advanced Materials, 2019, 31, e1807222.	11.1	270
7	Highly efficient near ultraviolet organic light-emitting diode based on a meta-linked donor–acceptor molecule. Chemical Science, 2015, 6, 3797-3804.	3.7	245
8	High Yields of Singlet Excitons in Organic Electroluminescence through Two Paths of Cold and Hot Excitons. Advanced Optical Materials, 2014, 2, 510-515.	3.6	216
9	Enhanced proportion of radiative excitons in non-doped electro-fluorescence generated from an imidazole derivative with an orthogonal donor–acceptor structure. Chemical Communications, 2013, 49, 11302.	2.2	198
10	Ï€â€Conjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions. Angewandte Chemie - International Edition, 2015, 54, 13594-13598.	7.2	182
11	Pressure-Induced Blue-Shifted and Enhanced Emission: A Cooperative Effect between Aggregation-Induced Emission and Energy-Transfer Suppression. Journal of the American Chemical Society, 2020, 142, 1153-1158.	6.6	178
12	Excimer-induced high-efficiency fluorescence due to pairwise anthracene stacking in a crystal with long lifetime. Chemical Communications, 2016, 52, 7356-7359.	2.2	164
13	Ternary Emission of Fluorescence and Dual Phosphorescence at Room Temperature: A Singleâ€Molecule White Light Emitter Based on Pure Organic Azaâ€Aromatic Material. Advanced Functional Materials, 2018, 28, 1802407.	7.8	141
14	Highly Efficient Nondoped Green Organic Light-Emitting Diodes with Combination of High Photoluminescence and High Exciton Utilization. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3041-3049.	4.0	126
15	Highly efficient deep-blue OLED with an extraordinarily narrow FHWM of 35 nm and a y coordinate <0.05 based on a fully twisting donor–acceptor molecule. Journal of Materials Chemistry C, 2014, 2, 4733-4736.	2.7	123
16	Porous Organic Polymer Films with Tunable Work Functions and Selective Hole and Electron Flows for Energy Conversions. Angewandte Chemie - International Edition, 2016, 55, 3049-3053.	7.2	121
17	Hybridization and de-hybridization between the locally-excited (LE) state and the charge-transfer (CT) state: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2016, 18, 24176-24184.	1.3	117
18	Highly efficient non-doped blue fluorescent OLEDs with low efficiency roll-off based on hybridized local and charge transfer excited state emitters. Chemical Science, 2020, 11, 5058-5065.	3.7	114

#	Article	IF	Citations
19	Excimer formation and evolution of excited state properties in discrete dimeric stacking of an anthracene derivative: a computational investigation. Physical Chemistry Chemical Physics, 2018, 20, 12129-12137.	1.3	95
20	Rehybridization of Nitrogen Atom Induced Photoluminescence Enhancement under Pressure Stimulation. Advanced Functional Materials, 2017, 27, 1602276.	7.8	92
21	Evidence of the Reverse Intersystem Crossing in Intraâ€Molecular Chargeâ€Transfer Fluorescenceâ€Based Organic Lightâ€Emitting Devices Through Magnetoâ€Electroluminescence Measurements. Advanced Optical Materials, 2013, 1, 362-366.	3.6	84
22	One-dimensional π–π stacking induces highly efficient pure organic room-temperature phosphorescence and ternary-emission single-molecule white light. Journal of Materials Chemistry C, 2019, 7, 12502-12508.	2.7	81
23	Discrete face-to-face stacking of anthracene inducing high-efficiency excimer fluorescence in solids via a thermally activated phase transition. Journal of Materials Chemistry C, 2017, 5, 10061-10067.	2.7	80
24	Efficient Nearâ€Infrared (NIR) Organic Lightâ€Emitting Diodes Based on Donor–Acceptor Architecture: An Improved Emissive State from Mixing to Hybridization. Advanced Optical Materials, 2017, 5, 1700441.	3.6	71
25	Dendrimerâ€Based, Highâ€Luminescence Conjugated Microporous Polymer Films for Highly Sensitive and Selective Volatile Organic Compound Sensor Arrays. Advanced Functional Materials, 2020, 30, 1910275.	7.8	71
26	Magnetoâ€Electroluminescence as a Tool to Discern the Origin of Delayed Fluorescence: Reverse Intersystem Crossing or Triplet–Triplet Annihilation?. Advanced Optical Materials, 2014, 2, 142-148.	3.6	70
27	Breaking the Efficiency Limit of Fluorescent OLEDs by Hybridized Local and Charge-Transfer Host Materials. Journal of Physical Chemistry Letters, 2018, 9, 5240-5245.	2.1	66
28	Construction of high efficiency non-doped deep blue emitters based on phenanthroimidazole: remarkable substitution effects on the excited state properties and device performance. Physical Chemistry Chemical Physics, 2014, 16, 20772-20779.	1.3	65
29	Monodisperse π–π Stacking Anthracene Dimer under Pressure: Unique Fluorescence Behaviors and Experimental Determination of Interplanar Distance at Excimer Equilibrium Geometry. Advanced Optical Materials, 2018, 6, 1800085.	3.6	63
30	Novel Deepâ€Blue Hybridized Local and Chargeâ€Transfer Host Emitter for Highâ€Quality Fluorescence/Phosphor Hybrid Quasiâ€White Organic Lightâ€Emitting Diode. Advanced Functional Materials, 2021, 31, 2100704.	7.8	63
31	Twist Angle and Rotation Freedom Effects on Luminescent Donor–Acceptor Materials: Crystal Structures, Photophysical Properties, and OLED Application. Advanced Optical Materials, 2016, 4, 2109-2118.	3.6	61
32	Highly efficient deep blue light emitting devices based on triphenylsilane modified phenanthro[9, 10- <i>d</i>]imidazole. Laser and Photonics Reviews, 2014, 8, L6-L10.	4.4	54
33	Achieving Highly Efficient Pure Organic Singleâ€Molecule Whiteâ€Light Emitter: The Coenhanced Fluorescence and Phosphorescence Dual Emission by Tailoring Alkoxy Substituents. Advanced Optical Materials, 2020, 8, 1901995.	3.6	54
34	Highly Efficient Orange-Red/Red Excimer Fluorescence from Dimeric π–π Stacking of Perylene and Its Nanoparticle Applications. Journal of Physical Chemistry C, 2019, 123, 13047-13056.	1.5	53
35	Aromatic S-Heterocycle and Fluorene Derivatives as Solution-Processed Blue Fluorescent Emitters: Structure–Property Relationships for Different Sulfur Oxidation States. Journal of Physical Chemistry C, 2013, 117, 14189-14196.	1.5	47
36	One Stimulus In Situ Induces Two Sequential Luminescence Switchings in the Same Solventâ€Fuming Process: Anthracene Excimer as the Intermediate. Advanced Functional Materials, 2019, 29, 1901895.	7.8	46

#	Article	IF	Citations
37	A single-molecule conformation modulating crystalline polymorph of a physical π–π pyrene dimer: blue and green emissions of a pyrene excimer. Journal of Materials Chemistry C, 2020, 8, 3367-3373.	2.7	46
38	Enhancing the Electroluminescent Efficiency of Acridine-Based Donor–Acceptor Materials: Quasi-Equivalent Hybridized Local and Charge-Transfer State. Journal of Physical Chemistry C, 2018, 122, 18376-18382.	1.5	45
39	Efficient near-infrared emission based on donor-acceptor molecular architecture: The role of ancillary acceptor of cyanophenyl. Dyes and Pigments, 2018, 149, 430-436.	2.0	44
40	Visualization of Ultrasensitive and Recyclable Dual-Channel Fluorescence Sensors for Chemical Warfare Agents Based on the State Dehybridization of Hybrid Locally Excited and Charge Transfer Materials. Analytical Chemistry, 2019, 91, 10927-10931.	3.2	43
41	Effect of cyano-substitution in distyrylbenzene derivatives on their fluorescence and electroluminescence properties. Journal of Materials Chemistry C, 2016, 4, 7478-7484.	2.7	40
42	Morphologyâ€Dependent Luminescence and Optical Waveguide Property in Largeâ€Size Organic Charge Transfer Cocrystals with Anisotropic Spatial Distribution of Transition Dipole Moment. Advanced Optical Materials, 2020, 8, 1901280.	3.6	34
43	Insight from Molecular Packing: Charge Transfer and Emission Modulation through Cocrystal Strategies. Crystal Growth and Design, 2020, 20, 5203-5210.	1.4	32
44	Highly efficient deep-blue light-emitting material based on V-Shaped donor-acceptor triphenylamine-phenanthro[9,10-d]imidazole molecule. Dyes and Pigments, 2020, 180, 108511.	2.0	31
45	Efficient pyrene-imidazole derivatives for organic light-emitting diodes. RSC Advances, 2016, 6, 17239-17245.	1.7	30
46	Unusual temperature-sensitive excimer fluorescence from discrete π–π dimer stacking of anthracene in a crystal. Physical Chemistry Chemical Physics, 2019, 21, 14511-14515.	1.3	30
47	Novel violet emitting material synthesized by stepwise chemical reactions. Journal of Materials Chemistry C, 2014, 2, 5019.	2.7	27
48	Isomerization effect of triphenylamine-acridine derivatives on excited-state modification, photophysical property and electroluminescence performance. Dyes and Pigments, 2017, 146, 558-566.	2.0	27
49	Novel PA-doped polybenzimidazole membranes with high doping level, high proton conductivity and high stability for HT-PEMFCs. RSC Advances, 2015, 5, 53870-53873.	1.7	24
50	Investigation on excited-state properties and electroluminescence performance of Donorâ^'Acceptor materials based on quinoxaline derivatives. Organic Electronics, 2019, 75, 105414.	1.4	24
51	The origin of the unusual red-shifted aggregation-state emission of triphenylamine-imidazole molecules: excimers or a photochemical reaction?. Materials Chemistry Frontiers, 2020, 4, 1411-1420.	3.2	23
52	A Novel Deep Blue LE-Dominated HLCT Excited State Design Strategy and Material for OLED. Molecules, 2021, 26, 4560.	1.7	22
53	Pressure Tuning Dual Fluorescence of $4-(\langle i\rangle N\langle i\rangle,\langle i\rangle N\langle i\rangle$ -Dimethylamino)benzonitrile. Journal of Physical Chemistry C, 2017, 121, 4909-4916.	1.5	21
54	Lamellar Organic Light-Emitting Crystals Exhibiting Spectral Gain and 3.6% External Quantum Efficiency in Transistors., 2021, 3, 428-432.		20

#	Article	IF	CITATIONS
55	Enhancing Fluorescence of Naphthalimide Derivatives by Suppressing the Intersystem Crossing. Journal of Physical Chemistry C, 2017, 121, 23218-23223.	1.5	18
56	The effect of meta coupling on colour purity, quantum yield, and exciton utilizing efficiency in deep-blue emitters from phenanthroimidazole isomers. Physical Chemistry Chemical Physics, 2015, 17, 31894-31901.	1.3	15
57	Modulation of Excited State Property Based on Benzo[a, c]phenazine Acceptor: Three Typical Excited States and Electroluminescence Performance. Frontiers in Chemistry, 2019, 7, 141.	1.8	14
58	Improving the Efficiency of Multilayer Organic Lightâ€Emitting Transistors by Exploring the Hole Blocking Effect. Advanced Materials Interfaces, 2020, 7, 2000657.	1.9	11
59	Highly efficient blue-emissive electroluminescence: nondestructive color regulation effect of orthogonal cyano-substitution in hybrid locally-excited and charge-transfer (HLCT) backbone emitters. Materials Today Chemistry, 2022, 24, 100785.	1.7	11
60	Bis(2-(benzo[d]thiazol-2-yl)-5-fluorophenolate)beryllium: a high-performance electron transport material for phosphorescent organic light-emitting devices. RSC Advances, 2016, 6, 5008-5015.	1.7	10
61	Single-Electron Oxidation/Alterable C3- and C10-Arylation of 9-MeO-phenanthrene. Organic Letters, 2018, 20, 3591-3595.	2.4	10
62	Enhanced deep-red emission in donor-acceptor molecular architecture: The role of ancillary acceptor of cyanophenyl. Chinese Chemical Letters, 2019, 30, 1947-1950.	4.8	9
63	Direct observation of excited state conversion in solid state from a TICT-Type mechanochromic luminogen. Journal of Luminescence, 2021, 237, 118179.	1.5	9
64	Achieving full-color emission of Cu nanocluster self-assembly nanosheets by the virtue of halogen effects. Soft Matter, 2021, 17, 4550-4558.	1.2	5
65	Photoluminescence: Rehybridization of Nitrogen Atom Induced Photoluminescence Enhancement under Pressure Stimulation (Adv. Funct. Mater. 1/2017). Advanced Functional Materials, 2017, 27, .	7.8	1
66	Design and Modulation on the Excited State Properties in Organic Electrofluorescence Materials. , 2017, , .		0