

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7265326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selfâ€Adaptive Plasma Chemistry and Intelligent Plasma Medicine. Advanced Intelligent Systems, 2022, 4, 2100112.	3.3	12
2	Improving Seed Germination by Cold Atmospheric Plasma. Plasma, 2022, 5, 98-110.	0.7	13
3	Cold Plasma Discharge Tube Enhances Antitumoral Efficacy of Temozolomide. ACS Applied Bio Materials, 2022, 5, 1610-1623.	2.3	11
4	Theranostic Potential of Adaptive Cold Atmospheric Plasma with Temozolomide to Checkmate Glioblastoma: An In Vitro Study. Cancers, 2022, 14, 3116.	1.7	6
5	Artificial Intelligence without Digital Computers: Programming Matter at a Molecular Scale. Advanced Intelligent Systems, 2022, 4, .	3.3	5
6	A map of control for cold atmospheric plasma jets: From physical mechanisms to optimizations. Applied Physics Reviews, 2021, 8, .	5.5	46
7	Non-thermal plasma multi-jet platform based on a flexible matrix. Review of Scientific Instruments, 2021, 92, 083505.	0.6	4
8	Cold Atmospheric Plasma Cancer Treatment, a Critical Review. Applied Sciences (Switzerland), 2021, 11, 7757.	1.3	22
9	Analysis of ionization in air-breathing plasma thruster. Physics of Plasmas, 2021, 28, .	0.7	13
10	In Vitro and In Vivo Enhancement of Temozolomide Effect in Human Glioblastoma by Non-Invasive Application of Cold Atmospheric Plasma. Cancers, 2021, 13, 4485.	1.7	26
11	The Periodic Cellular Behaviors Under the Physical Effects of Plasma Medicine. , 2021, , .		0
12	A Physically Triggered Cell Death via Transbarrier Cold Atmospheric Plasma Cancer Treatment. ACS Applied Materials & Interfaces, 2020, 12, 34548-34563.	4.0	47
13	Comparative Study of Cancer Treatment Potential Effects of Tumor-Treating Fields and Cold Atmospheric Plasma. Plasma Medicine, 2020, 10, 45-59.	0.2	4
14	Sensitization of glioblastoma cells to temozolomide by a helium gas discharge tube. Physics of Plasmas, 2020, 27, .	0.7	13
15	Combination therapy of cold atmospheric plasma (CAP) with temozolomide in the treatment of U87MG glioblastoma cells. Scientific Reports, 2020, 10, 16495.	1.6	39
16	Plasma–Liquid Interface Manipulated by Chamber Structure: An Experimental and Theoretical Approach. ACS Applied Materials & Interfaces, 2020, 12, 44238-44247.	4.0	4
17	Introducing adaptive cold atmospheric plasma: The perspective of adaptive cold plasma cancer treatments based on real-time electrochemical impedance spectroscopy. Physics of Plasmas, 2020, 27, .	0.7	26
18	Current Understanding of Mechanisms in Plasma Cancer Therapy and Recent Advances in Technology. Springer Series on Atomic, Optical, and Plasma Physics, 2020, , 271-287.	0.1	1

Li Lin

#	Article	IF	CITATIONS
19	Model for deformation of cells from external electric fields at or near resonant frequencies. Biomedical Physics and Engineering Express, 2020, 6, 065022.	0.6	2
20	Cold plasma-based control of the activation of pancreatic adenocarcinoma cells. Journal Physics D: Applied Physics, 2019, 52, 445202.	1.3	13
21	Atmospheric Plasma Meets Cell: Plasma Tailoring by Living Cells. ACS Applied Materials & Interfaces, 2019, 11, 30621-30630.	4.0	25
22	Continuousâ€wave plasmaâ€generated electric field in 3D collagen gel during cold atmospheric plasma treatment. Plasma Processes and Polymers, 2019, 16, 1900129.	1.6	5
23	Interaction between a helium atmospheric plasma jet and targets and dynamics of the interface. Plasma Sources Science and Technology, 2019, 28, 115002.	1.3	27
24	Cold atmospheric helium plasma jet in humid air environment. Journal of Applied Physics, 2019, 125, .	1.1	30
25	Pulsed anodic arc discharge for the synthesis of carbon nanomaterials. Plasma Sources Science and Technology, 2019, 28, 045016.	1.3	19
26	Mathematical modeling and control for cancer treatment with cold atmospheric plasma jet. Journal Physics D: Applied Physics, 2019, 52, 185202.	1.3	21
27	Selective Treatment of Pancreatic Cancer Cells by Plasma-Activated Saline Solutions. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 116-120.	2.7	19
28	Average electron temperature estimation of streamer discharge in ambient air. Review of Scientific Instruments, 2018, 89, 113502.	0.6	17
29	The Correlation Between the Cytotoxicity of Cold Atmospheric Plasma and the Extracellular H ₂ O ₂ -Scavenging Rate. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 618-623.	2.7	17
30	The Cell Activation Phenomena in the Cold Atmospheric Plasma Cancer Treatment. Scientific Reports, 2018, 8, 15418.	1.6	67
31	Cold atmospheric plasma discharged in water and its potential use in cancer therapy. Journal Physics D: Applied Physics, 2017, 50, 015208.	1.3	47
32	A Novel Micro Cold Atmospheric Plasma Device for Glioblastoma Both In Vitro and In Vivo. Cancers, 2017, 9, 61.	1.7	103
33	Application of a Micro-Cold Atmospheric Plasma Device (μCAP) in Vitro and Vivo for Brain Cancer Therapy. , 2017, , .		1
34	Treatment of gastric cancer cells with nonthermal atmospheric plasma generated in water. Biointerphases, 2016, 11, 031010.	0.6	31
35	Cold atmospheric plasma jet in an axial DC electric field. Physics of Plasmas, 2016, 23, 083529.	0.7	26
36	Effects of cold atmospheric plasma generated in deionized water in cell cancer therapy. Plasma Processes and Polymers, 2016, 13, 1151-1156.	1.6	49