
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7265285/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ten years of marine evolutionary biology—Challenges and achievements of a multidisciplinary research initiative. Evolutionary Applications, 2023, 16, 530-541.	1.5	4
2	Ten years of demographic modelling of divergence and speciation in the sea. Evolutionary Applications, 2023, 16, 542-559.	1.5	11
3	Local adaptation through countergradient selection in northern populations of <i>Skeletonema marinoi</i> . Evolutionary Applications, 2023, 16, 311-320.	1.5	4
4	An allozyme polymorphism is associated with a large chromosomal inversion in the marine snail <i>Littorina fabalis</i> . Evolutionary Applications, 2023, 16, 279-292.	1.5	7
5	Very short mountings are enough for sperm transfer in <i>Littorina saxatilis</i> . Journal of Molluscan Studies, 2022, 88, .	0.4	1
6	Preface. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210491.	1.8	3
7	Introduction to the theme issue †Species' ranges in the face of changing environments'. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210002.	1.8	4
8	Combining population genomics with demographic analyses highlights habitat patchiness and larval dispersal as determinants of connectivity in coastal fish species. Molecular Ecology, 2022, 31, 2562-2577.	2.0	13
9	The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea. Biological Invasions, 2022, 24, 3169-3187.	1.2	39
10	Inversions and parallel evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, .	1.8	19
11	Postâ€glacial establishment of locally adapted fish populations over a steep salinity gradient. Journal of Evolutionary Biology, 2021, 34, 138-156.	0.8	28
12	Genetic and morphological divergence between <i>Littorina fabalis</i> ecotypes in Northern Europe. Journal of Evolutionary Biology, 2021, 34, 97-113.	0.8	10
13	Ecological Load and Balancing Selection in Circumboreal Barnacles. Molecular Biology and Evolution, 2021, 38, 676-685.	3.5	11
14	Authors' Reply to Letter to the Editor: Continued improvement to genetic diversity indicator for CBD. Conservation Genetics, 2021, 22, 533-536.	0.8	18
15	Genetic variation for adaptive traits is associated with polymorphic inversions in <i>Littorina saxatilis</i> . Evolution Letters, 2021, 5, 196-213.	1.6	42
16	From tides to nucleotides: Genomic signatures of adaptation to environmental heterogeneity in barnacles. Molecular Ecology, 2021, 30, 6417-6433.	2.0	9
17	Population structure and phylogeography of two North Atlantic Littorina species with contrasting larval development. Marine Biology, 2021, 168, 1.	0.7	10
18	Using replicate hybrid zones to understand the genomic basis of adaptive divergence. Molecular Ecology, 2021, 30, 3797-3814.	2.0	37

#	Article	IF	CITATIONS
19	Speciation in marine environments: Diving under the surface. Journal of Evolutionary Biology, 2021, 34, 4-15.	0.8	31
20	A large chromosomal inversion shapes gene expression in seaweed flies (<i>Coelopa frigida</i>). Evolution Letters, 2021, 5, 607-624.	1.6	11
21	Is embryo abortion a postâ€zygotic barrier to gene flow between <i>Littorina</i> ecotypes?. Journal of Evolutionary Biology, 2020, 33, 342-351.	0.8	14
22	A Darwinian Laboratory of Multiple Contact Zones. Trends in Ecology and Evolution, 2020, 35, 1021-1036.	4.2	63
23	The evolution of strong reproductive isolation between sympatric intertidal snails. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190545.	1.8	23
24	Assortative mating, sexual selection, and their consequences for gene flow in <i>Littorina</i> . Evolution; International Journal of Organic Evolution, 2020, 74, 1482-1497.	1.1	23
25	Post-2020 goals overlook genetic diversity. Science, 2020, 367, 1083-1085.	6.0	132
26	Combining an Ecological Experiment and a Genome Scan Show Idiosyncratic Responses to Salinity Stress in Local Populations of a Seaweed. Frontiers in Marine Science, 2020, 7, .	1.2	14
27	Phylogeographic history of flat periwinkles, Littorina fabalis and L. obtusata. BMC Evolutionary Biology, 2020, 20, 23.	3.2	16
28	Secondary contacts and genetic admixture shape colonization by an amphiatlantic epibenthic invertebrate. Evolutionary Applications, 2020, 13, 600-612.	1.5	20
29	Spatial genetic structure in a crustacean herbivore highlights the need for local considerations in Baltic Sea biodiversity management. Evolutionary Applications, 2020, 13, 974-990.	1.5	17
30	Evolving Inversions. Trends in Ecology and Evolution, 2019, 34, 239-248.	4.2	179
31	Factors affecting formation of adventitious branches in the seaweeds Fucus vesiculosus and F. radicans. BMC Ecology, 2019, 19, 22.	3.0	5
32	Integrating experimental and distribution data to predict future species patterns. Scientific Reports, 2019, 9, 1821.	1.6	51
33	Genomic architecture of parallel ecological divergence: Beyond a single environmental contrast. Science Advances, 2019, 5, eaav9963.	4.7	92
34	Understanding and bridging the conservationâ€genetics gap in marine conservation. Conservation Biology, 2019, 33, 725-728.	2.4	22
35	Multiple chromosomal rearrangements in a hybrid zone between <i>Littorina saxatilis</i> ecotypes. Molecular Ecology, 2019, 28, 1375-1393.	2.0	103
36	High climate velocity and population fragmentation may constrain climateâ€driven range shift of the key habitat former <i>Fucus vesiculosus</i> . Diversity and Distributions, 2018, 24, 892-905.	1.9	41

#	Article	IF	CITATIONS
37	Diet-dependent gene expression highlights the importance of Cytochrome P450 in detoxification of algal secondary metabolites in a marine isopod. Scientific Reports, 2018, 8, 16824.	1.6	8
38	Population genomics of parallel evolution in gene expression and gene sequence during ecological adaptation. Scientific Reports, 2018, 8, 16147.	1.6	12
39	Clines on the seashore: The genomic architecture underlying rapid divergence in the face of gene flow. Evolution Letters, 2018, 2, 297-309.	1.6	103
40	Oceanographic barriers to gene flow promote genetic subdivision of the tunicate Ciona intestinalis in a North Sea archipelago. Marine Biology, 2018, 165, 126.	0.7	13
41	The Baltic Sea as a time machine for the future coastal ocean. Science Advances, 2018, 4, eaar8195.	4.7	339
42	Genetic diversity and evolution. , 2017, , 233-253.		7
43	Reciprocal transplants support a plasticity-first scenario during colonisation of a large hyposaline basin by a marine macro alga. BMC Ecology, 2017, 17, 14.	3.0	15
44	Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Molecular Ecology, 2017, 26, 4452-4466.	2.0	130
45	A life ycle approach to species barriers. Molecular Ecology, 2017, 26, 3321-3323.	2.0	0
46	Comparative mitogenomic analysis of three species of periwinkles: Littorina fabalis, L. obtusata and L. saxatilis. Marine Genomics, 2017, 32, 41-47.	0.4	12
47	Mechanisms of Adaptive Divergence and Speciation in Littorina saxatilis: Integrating Knowledge from Ecology and Genetics with New Data Emerging from Genomic Studies. Population Genomics, 2017, , 277-301.	0.2	20
48	Adaptation to dislodgement risk on wave-swept rocky shores in the snail Littorina saxatilis. PLoS ONE, 2017, 12, e0186901.	1.1	34
49	Transporting ideas between marine and social sciences: experiences from interdisciplinary research programs. Elementa, 2017, 5, .	1.1	4
50	Divergence within and among Seaweed Siblings (Fucus vesiculosus and F. radicans) in the Baltic Sea. PLoS ONE, 2016, 11, e0161266.	1.1	32
51	Shared and nonshared genomic divergence in parallel ecotypes of <i><scp>L</scp>ittorina saxatilis</i> at a local scale. Molecular Ecology, 2016, 25, 287-305.	2.0	142
52	Non-random paternity of offspring in a highly promiscuous marine snail suggests postcopulatory sexual selection. Behavioral Ecology and Sociobiology, 2016, 70, 1357-1366.	0.6	15
53	DNA Extraction Protocols for Whole-Genome Sequencing in Marine Organisms. Methods in Molecular Biology, 2016, 1452, 13-44.	0.4	57
54	A universal mechanism generating clusters of differentiated loci during divergence-with-migration. Evolution; International Journal of Organic Evolution, 2016, 70, 1609-1621.	1.1	29

#	Article	IF	CITATIONS
55	What can be learnt from a snail?. Evolutionary Applications, 2016, 9, 153-165.	1.5	34
56	Complex spatial clonal structure in the macroalgae <i><scp>F</scp>ucus radicans</i> with both sexual and asexual recruitment. Ecology and Evolution, 2015, 5, 4233-4245.	0.8	33
57	No precopulatory inbreeding avoidance in the intertidal snailLittorina saxatilis. Journal of Molluscan Studies, 2015, , eyv035.	0.4	3
58	Variable salinity tolerance in ascidian larvae is primarily a plastic response to the parental environment. Evolutionary Ecology, 2014, 28, 561-572.	0.5	22
59	PARALLEL EVOLUTION OF LOCAL ADAPTATION AND REPRODUCTIVE ISOLATION IN THE FACE OF GENE FLOW. Evolution; International Journal of Organic Evolution, 2014, 68, 935-949.	1.1	165
60	Species and gene divergence in Littorina snails detected by array comparative genomic hybridization. BMC Genomics, 2014, 15, 687.	1.2	23
61	Genetic biodiversity in the Baltic Sea: species-specific patterns challenge management. Biodiversity and Conservation, 2013, 22, 3045-3065.	1.2	50
62	Parallel speciation or longâ€distance dispersal? Lessons from seaweeds (<i><scp>F</scp>ucus</i>) in the <scp>B</scp> altic <scp>S</scp> ea. Journal of Evolutionary Biology, 2013, 26, 1727-1737.	0.8	45
63	Preference of males for large females causes a partial mating barrier between a large and a small ecotype of Littorina fabalis (W. Turton, 1825). Journal of Molluscan Studies, 2013, 79, 128-132.	0.4	24
64	Snails and their trails: the multiple functions of trailâ€following in gastropods. Biological Reviews, 2013, 88, 683-700.	4.7	106
65	The Effect of Multiple Paternity on Genetic Diversity of Small Populations during and after Colonisation. PLoS ONE, 2013, 8, e75587.	1.1	20
66	The Littorina sequence database (LSD) – an online resource for genomic data. Molecular Ecology Resources, 2012, 12, 142-148.	2.2	15
67	Genetic architecture in a marine hybrid zone: comparing outlier detection and genomic clines analysis in the bivalve <i>Macoma balthica</i> . Molecular Ecology, 2012, 21, 3048-3061.	2.0	38
68	Phenotypic variation in sexually and asexually recruited individuals of the Baltic Sea endemic macroalga Fucus radicans: in the field and after growth in a common-garden. BMC Ecology, 2012, 12, 2.	3.0	15
69	Glacial History of the North Atlantic Marine Snail, Littorina saxatilis, Inferred from Distribution of Mitochondrial DNA Lineages. PLoS ONE, 2011, 6, e17511.	1.1	84
70	FREQUENT CLONALITY IN FUCOIDS (<i>FUCUS RADICANS</i> AND <i>FUCUS VESICULOSUS</i> ; FUCALES,) TJ E	т <u>ү</u> д0 0 0	rgBT /Overlo

71	The Future of Baltic Sea Populations: Local Extinction or Evolutionary Rescue?. Ambio, 2011, 40, 179-190.	2.8	87
72	Are we analyzing speciation without prejudice?. Annals of the New York Academy of Sciences, 2010, 1206, 143-149.	1.8	16

#	Article	IF	CITATIONS
73	Repeated evolution of reproductive isolation in a marine snail: unveiling mechanisms of speciation. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 1735-1747.	1.8	151
74	Extreme Female Promiscuity in a Non-Social Invertebrate Species. PLoS ONE, 2010, 5, e9640.	1.1	52
75	Indiscriminate Males: Mating Behaviour of a Marine Snail Compromised by a Sexual Conflict?. PLoS ONE, 2010, 5, e12005.	1.1	27
76	Rapid speciation in a newly opened postglacial marine environment, the Baltic Sea. BMC Evolutionary Biology, 2009, 9, 70.	3.2	97
77	Inverting the null-hypothesis of speciation: a marine snail perspective. Evolutionary Ecology, 2009, 23, 5-16.	0.5	21
78	Case studies and mathematical models of ecological speciation. 3: Ecotype formation in a Swedish snail. Molecular Ecology, 2009, 18, 4006-4023.	2.0	44
79	Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods. Journal of Evolutionary Biology, 2009, 22, 2000-2011.	0.8	42
80	MALE DISCRIMINATION OF FEMALE MUCOUS TRAILS PERMITS ASSORTATIVE MATING IN A MARINE SNAIL SPECIES. Evolution; International Journal of Organic Evolution, 2008, 62, 3178-3184.	1.1	62
81	Genetic differentiation on multiple spatial scales in an ecotype-forming marine snail with limited dispersal: Littorina saxatilis. Biological Journal of the Linnean Society, 2008, 94, 31-40.	0.7	17
82	Microsatellite cross-species amplification in the genus Littorina and detection of null alleles in Littorina saxatilis. Journal of Molluscan Studies, 2008, 74, 111-117.	0.4	21
83	GENETIC STRUCTURE IN POPULATIONS OF <i>FUCUS VESICULOSUS</i> (PHAEOPHYCEAE) OVER SPATIAL SCALES FROM 10 M TO 800 KM ¹ . Journal of Phycology, 2007, 43, 675-685.	1.0	56
84	EVOLUTION OF ADAPTATION THROUGH ALLOMETRIC SHIFTS IN A MARINE SNAIL. Evolution; International Journal of Organic Evolution, 2006, 60, 2490-2497.	1.1	38
85	Phenotypic plasticity in two marine snails: constraints superseding life history. Journal of Evolutionary Biology, 2006, 19, 1861-1872.	0.8	82
86	INVITED REVIEW: Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Molecular Ecology, 2006, 15, 2013-2029.	2.0	458
87	Site-specific genetic divergence in parallel hybrid zones suggests nonallopatric evolution of reproductive barriers. Molecular Ecology, 2006, 15, 4021-4031.	2.0	1,818
88	EVOLUTION OF ADAPTATION THROUGH ALLOMETRIC SHIFTS IN A MARINE SNAIL. Evolution; International Journal of Organic Evolution, 2006, 60, 2490.	1.1	11
89	GENETIC AND MORPHOLOGICAL IDENTIFICATION OF FUCUS RADICANS SP. NOV. (FUCALES, PHAEOPHYCEAE) IN THE BRACKISH BALTIC SEA1 Journal of Phycology, 2005, 41, 1025-1038.	1.0	95
90	Intriguing asexual life in marginal populations of the brown seaweed Fucus vesiculosus. Molecular Ecology, 2005, 14, 647-651.	2.0	115

#	Article	IF	CITATIONS
91	COLONIZATION HISTORY OF THE BALTIC HARBOR SEALS: INTEGRATING ARCHAEOLOGICAL, BEHAVIORAL, AND GENETIC DATA. Marine Mammal Science, 2005, 21, 695-716.	0.9	20
92	Local adaptation but not geographical separation promotes assortative mating in a snail. Animal Behaviour, 2005, 70, 1209-1219.	0.8	69
93	Refuge function of marine algae complicates selection in an intertidal snail. Oecologia, 2005, 143, 402-411.	0.9	23
94	Nonallopatric and parallel origin of local reproductive barriers between two snail ecotypes. Molecular Ecology, 2004, 13, 3415-3424.	2.0	104
95	Habitat-related genetic substructuring in a marine snail (Littorina fabalis) involving a tight link between an allozyme and a DNA locus. Biological Journal of the Linnean Society, 2004, 81, 301-306.	0.7	17
96	Island isolation and habitat heterogeneity correlate with DNA variation in a marine snail (Littorina) Tj ETQq0 0 0 r	gBT_/Overl	ock 10 Tf 50
97	Evolution in Littorina: ecology matters. Journal of Sea Research, 2003, 49, 107-117.	0.6	113
98	Incidence of hemocytes and parasites in coastal populations of blue mussels (Mytilus edulis)—testing correlations with area, season, and distance to industrial plants. Journal of Invertebrate Pathology, 2002, 80, 22-28.	1.5	17
99	Parallel speciation: a key to sympatric divergence. Trends in Ecology and Evolution, 2001, 16, 148-153.	4.2	146
100	Symbiotic associations between anthozoans and crustaceans in a temperate coastal area. Marine Ecology - Progress Series, 2001, 209, 189-195.	0.9	29
101	HYBRID FITNESS SEEMS NOT TO BE AN EXPLANATION FOR THE PARTIAL REPRODUCTIVE ISOLATION BETWEEN ECOTYPES OF GALICIAN LITTORINA SAXATILIS. Journal of Molluscan Studies, 2000, 66, 149-156.	0.4	17
102	Digenetic trematodes in four species oflittorinafrom the West Coast of Sweden. Ophelia, 2000, 53, 55-65.	0.3	24
103	Mechanisms of incomplete prezygotic reproductive isolation in an intertidal snail: testing behavioural models in wild populations. Journal of Evolutionary Biology, 1999, 12, 879-890.	0.8	85
104	Micro- and macrogeographic allozyme variation in Littorina fabalis; do sheltered and exposed forms hybridize?. Biological Journal of the Linnean Society, 1999, 67, 199-212.	0.7	5
105	Micro- and macrogeographic allozyme variation in Littorina fabalis ; do sheltered and exposed forms hybridize?. Biological Journal of the Linnean Society, 1999, 67, 199-212.	0.7	26
106	Size of mudsnails, Hydrobia ulvae (Pennant) and H. ventrosa (Montagu), in allopatry and sympatry: conclusions from field distributions and laboratory growth experiments. Journal of Experimental Marine Biology and Ecology, 1999, 239, 167-181.	0.7	13
107	Migratory differences between ecotypes of the snail Littorina saxatilis on Galician rocky shores. Evolutionary Ecology, 1998, 12, 913-924.	0.5	48
108	Evidence of a reproductive barrier between two forms of the marine periwinkle Littorina fabalis (Gastropoda). Biological Journal of the Linnean Society, 1998, 63, 349-365.	0.7	28

#	Article	IF	CITATIONS
109	Allozyme Variation in a Snail (Littorina saxatilis)-Deconfounding the Effects of Microhabitat and Gene Flow. Evolution; International Journal of Organic Evolution, 1997, 51, 402.	1.1	36
110	THE MAINTENANCE OF A CLINE IN THE MARINE SNAIL <i>LITTORINA SAXATILIS:</i> THE ROLE OF HOME SITE ADVANTAGE AND HYBRID FITNESS. Evolution; International Journal of Organic Evolution, 1997, 51, 1838-1847.	1.1	90
111	ALLOZYME VARIATION IN A SNAIL (<i>LITTORINA SAXATILIS</i>)-DECONFOUNDING THE EFFECTS OF MICROHABITAT AND GENE FLOW. Evolution; International Journal of Organic Evolution, 1997, 51, 402-409.	1.1	46
112	The Maintenance of a Cline in the Marine Snail Littorina saxatilis: The Role of Home Site Advantage and Hybrid Fitness. Evolution; International Journal of Organic Evolution, 1997, 51, 1838.	1.1	82
113	Shell colour variation in Littorina saxatilis Olivi (Prosobranchia: Littorinidae): a multi-factor approach. Biological Journal of the Linnean Society, 1997, 62, 401-419.	0.7	8
114	Growth rate differences between upper and lower shore ecotypes of the marine snail Littorina saxatilis (Olivi) (Gastropoda). Biological Journal of the Linnean Society, 1997, 61, 267-279.	0.7	15
115	Differentiation in radular and embryonic characters, and further comments on gene flow, between two sympatric morphs ofLittorina saxatilis(Olivi). Ophelia, 1996, 45, 1-15.	0.3	38
116	Population differences in behaviour and morphology in the snail <i>Littorina saxatilis:</i> phenotypic plasticity or genetic differentiation?. Journal of Zoology, 1996, 240, 475-493.	0.8	110
117	INCIPIENT REPRODUCTIVE ISOLATION BETWEEN TWO SYMPATRIC MORPHS OF THE INTERTIDAL SNAIL <i>LITTORINA SAXATILIS</i> . Evolution; International Journal of Organic Evolution, 1995, 49, 1180-1190.	1.1	100
118	Frequency- and density-dependent sexual selection in natural populations of Galician Littorina saxatilis Olivi. Hydrobiologia, 1995, 309, 167-172.	1.0	17
119	Dispersal and population expansion in a direct developing marine snail (Littorina saxatilis) following a severe population bottleneck. Hydrobiologia, 1995, 309, 173-180.	1.0	30
120	Incipient Reproductive Isolation between Two Sympatric Morphs of the Intertidal Snail Littorina saxatilis. Evolution; International Journal of Organic Evolution, 1995, 49, 1180.	1.1	87
121	Strong natural selection causes microscale allozyme variation in a marine snail Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2602-2606.	3.3	135
122	Dispersal and population expansion in a direct developing marine snail (Littorina saxatilis) following a severe population bottleneck. , 1995, , 173-180.		4
123	Sexual selection on female size in a marine snail, Littorina littorea (L.). Journal of Experimental Marine Biology and Ecology, 1994, 181, 145-157.	0.7	61
124	Habitat related allozyme variation on a microgeographic scale in the marine snail Littorina mariae (Prosobranchia: Littorinacea). Biological Journal of the Linnean Society, 1994, 53, 105-125.	0.7	32
125	Morphological Differentiation and Genetic Cohesiveness Over a Microenvironmental Gradient in the Marine Snail Littorina saxatilis. Evolution; International Journal of Organic Evolution, 1993, 47, 1770.	1.1	96
126	MORPHOLOGICAL DIFFERENTIATION AND GENETIC COHESIVENESS OVER A MICROENVIRONMENTAL GRADIENT IN THE MARINE SNAIL <i>LITTORINA SAXATILIS</i> . Evolution; International Journal of Organic Evolution, 1993, 47, 1770-1787.	1.1	101

#	Article	IF	CITATIONS
127	Resources for Long Distance Migration: Intertidal Exploitation of Littorina and Mytilus by Knots Calidris Canutus in Iceland. Oikos, 1992, 65, 179.	1.2	51
128	Genetic variability and large scale differentiation in two species of littorinid gastropods with planktotrophic development, Littorina littorea (L.) and Melarhaphe (Littorina) neritoides (L.) (Prosobranchia: Littorinacea), with notes on a mass occurrence. Biological Journal of the Linnean Society, 1992, 47, 285-299.	0.7	39
129	Estimating the phylogeny in mollusc Littorina saxatilis (Olivi) from enzyme data: methodological considerations. Hydrobiologia, 1990, 193, 29-40.	1.0	8
130	Littorina neglecta Bean, a morphological form within the variable species Littorina saxatilis (Olivi)?. Hydrobiologia, 1990, 193, 71-87.	1.0	27
131	Genetic variation within Littorina saxatilis (Olivi) and Littorina neglecta Bean: Is L. neglecta a good species?. Hydrobiologia, 1990, 193, 89-97.	1.0	35
132	Rapid colonization of Belgian breakwaters by the direct developer, Littorina saxatilis (Olivi) (Prosobranchia, Mollusca). Hydrobiologia, 1990, 193, 99-108.	1.0	39
133	Rapid colonization of Belgian breakwaters by the direct developer, Littorina saxatilis (Olivi) (Prosobranchia, Mollusca). , 1990, , 99-108.		11
134	Genetic variation within Littorina saxatilis (Olivi) and Littorina neglecta Bean: Is L. neglecta a good species ?. , 1990, , 89-97.		3
135	Low genetic variability in Scandinavian populations of Ostrea edulis L possible causes and implications. Journal of Experimental Marine Biology and Ecology, 1989, 128, 177-190.	0.7	13
136	Differences in allele frequencies of <i>Aat</i> between high- and mid-rocky shore populations of <i>Littorina saxatilis</i> (Olivi) suggest selection in this enzyme locus. Genetical Research, 1989, 54, 7-12.	0.3	50
137	The Bare Zone of Swedish Rocky Shores: Why Is It There?. Oikos, 1989, 54, 77.	1.2	55
138	Allozyme and shell variation in two marine snails (Littorina, Prosobranchia) with different dispersal abilities. Biological Journal of the Linnean Society, 1987, 30, 245-256.	0.7	113
139	Genetic drift in small and recently founded populations of the marine snail Littorina Saxatilis. Heredity, 1987, 58, 31-37.	1.2	47
140	VARIATION IN THE OCCURRENCE OF ABNORMAL EMBRYOS IN FEMALES OF THE INTERTIDAL GASTROPOD LITTORINA SAXATILIS OLIVI. Journal of Molluscan Studies, 1985, 51, 64-68.	0.4	27
141	Microgeographic variation in allozyme and shell characters in Littorina saxatilis Olivi (Prosobranchia: Littorinidae). Biological Journal of the Linnean Society, 1984, 22, 289-307.	0.7	95
142	Selection and migration in two distinct phenotypes of Littorina saxatilis in Sweden. Oecologia, 1983, 59, 58-61.	0.9	140
143	Selective predation favouring cryptic individuals of marine snails (Littorina). Biological Journal of the Linnean Society, 0, 76, 137-144.	0.7	52