Zuoling Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7265035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel differential display material: K3LuSi2O7: Tb3+/Bi3+ phosphor with thermal response, time resolution and luminescence color for optical anti-counterfeiting. Journal of Colloid and Interface Science, 2022, 608, 758-767.	9.4	26
2	Tunable KLa(MoO4)2:Eu3+@CDs composite materials for white LED and multi-mode information encryption technology. Journal of Alloys and Compounds, 2022, 894, 162298.	5.5	5
3	Multifunctional lanthanide ionsâ€doped Ba2TiGe2O8 phosphor for near-infrared ratiometric thermometer and information security. Journal of Luminescence, 2022, 243, 118652.	3.1	5
4	Self-calibrated ratiometric thermometers and multi-mode anti-counterfeiting based on Ca2LaNbO6:Pr3+ optical material. Scripta Materialia, 2022, 211, 114515.	5.2	7
5	Dual-mode multicolor luminescence based on lanthanide-doped Na2CaGe2O6 phosphor for anticounterfeiting application. Journal of Luminescence, 2022, 249, 118937.	3.1	5
6	Multifunctional optical thermometry based on the transition metal ions doped down-conversion Gd2ZnTiO6: Bi3+, Mn4+ phosphors. Journal of Luminescence, 2021, 229, 117653.	3.1	33
7	High-performance disease diagnosis fluorescent probe based on new type structure YbF3: Er3+@SiO2@GQDs. Chemical Engineering Journal, 2021, 406, 126755.	12.7	28
8	Investigation of high-concentration doping performance based on Er3+-ion-doped Ba6Gd2Ti4O17. Dalton Transactions, 2021, 50, 9483-9490.	3.3	1
9	Upconversion luminescence and temperature sensing characteristics of Yb ³⁺ /Tm ³⁺ :KLa(MoO ₄) ₂ phosphors. Dalton Transactions, 2021, 50, 1239-1245.	3.3	29
10	Trimodal Ratiometric Luminescent Thermometer Covering Three Near-Infrared Transparency Windows. Inorganic Chemistry, 2021, 60, 14944-14951.	4.0	19
11	Sm3+-doped niobate orange-red phosphors with a double-perovskite structure for plant cultivation and temperature sensing. Journal of Alloys and Compounds, 2021, 889, 161671.	5.5	45
12	Enhancing the Upconversion Luminescence and Sensitivity of Nanothermometry through Advanced Design of Dumbbell-Shaped Structured Nanoparticles. ACS Applied Materials & Interfaces, 2021, 13, 61506-61517.	8.0	23
13	The Charge Transfer Band as a Key to Study the Site Selection Preference of Eu ³⁺ in Inorganic Crystals. Inorganic Chemistry, 2021, 60, 19440-19447.	4.0	15
14	Constructing new thermally coupled levels based on different emitting centers for high sensitive optical thermometer. Chemical Engineering Journal, 2020, 381, 122654.	12.7	50
15	NIRâ€I/III Luminescence Ratiometric Nanothermometry with Phononâ€Tuned Sensitivity. Advanced Optical Materials, 2020, 8, 1901173.	7.3	51
16	Optically Pumped Monolayer MoSe ₂ Excitonic Lasers from Whispering Gallery Mode Microcavities. Journal of Physical Chemistry Letters, 2020, 11, 541-547.	4.6	8
17	Superior temperature sensing of small-sized upconversion nanocrystals for simultaneous bioimaging and enhanced synergetic therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2020, 24, 102135.	3.3	17
18	Core-shell mutual enhanced luminescence based on space isolation strategy for anti-counterfeiting applications. Journal of Luminescence, 2020, 218, 116862.	3.1	13

Zuoling Fu

#	Article	IF	CITATIONS
19	An ultrasensitive luminescent nanothermometer in the first biological window based on phonon-assisted thermal enhancing and thermal quenching. Journal of Materials Chemistry C, 2020, 8, 15603-15608.	5.5	30
20	What determines the performance of lanthanide-based ratiometric nanothermometers?. Nanoscale, 2020, 12, 20776-20785.	5.6	82
21	Novel excited-state nanothermometry combining the red-shift of charge-transfer bands and a thermal coupling effect. Inorganic Chemistry Frontiers, 2020, 7, 3932-3937.	6.0	26
22	Optical properties of the CaEuAl 3 O 7 phosphor with dualâ€activator Eu 2+ /Eu 3+ for multifunctional applications. Journal of the American Ceramic Society, 2020, 103, 5721-5730.	3.8	13
23	A Thermometer Based on Er ensitized Phosphors Gd 2 (WO 4) 3 :Er,Yb@SiO 2 in Nearâ€Infrared and Visible Regions. Physica Status Solidi (B): Basic Research, 2020, 257, 1900773.	1.5	4
24	Highly sensitive self-referencing thermometry probe and advanced anti-counterfeiting based on the CDs/YVO4:Eu3+ composite materials. Scripta Materialia, 2020, 186, 298-303.	5.2	19
25	Choice of low thermal quenching phosphors based on high lattice energy for light-emitting application. Journal of Luminescence, 2020, 222, 117098.	3.1	4
26	Prediction of Thermal-Coupled Thermometric Performance of Er ³⁺ . Journal of Physical Chemistry Letters, 2019, 10, 5786-5790.	4.6	35
27	One-pot synthesis of SiO ₂ -coated Gd ₂ (WO ₄) ₃ :Yb ³⁺ /Ho ³⁺ nanoparticles for simultaneous multi-imaging, temperature sensing and tumor inhibition. Dalton Transactions, 2019, 48, 10537-10546.	3.3	14
28	Multifunctional Optical Thermometry Based on the Rare-Earth-Ions-Doped Up-/Down-Conversion Ba ₂ TiGe ₂ O ₈ :Ln (Ln = Eu ³⁺ / Er ³⁺ /) Tj ETQq0 0	0 r ∕g.₿ T /O∖	vertrack 10 Tf
29	Investigation on the Fluorescence Intensity Ratio Sensing Thermometry Based on Nonthermally Coupled Levels. ACS Applied Bio Materials, 2019, 2, 1732-1739.	4.6	49
30	Sema6A-plexin-A2 axis stimulates RANKL-induced osteoclastogenesis through PLCÎ ³ -mediated NFATc1 activation. Life Sciences, 2019, 222, 29-35.	4.3	6
31	Simultaneous luminescence in â, â; and III biological windows realized by using the energy transfer of Yb3+†→†Er3+/Ho3+†→†Cr3+. Chemical Engineering Journal, 2019, 365, 400-404.	12.7	35
32	Investigation for the upconversion luminescence and temperature sensing mechanism based on BiPO4: Yb3+, RE3+ (RE3+ =†Ho3+, Er3+ and Tm3+). Journal of Alloys and Compounds, 2019, 772, 371-380.	5.5	73
33	High concentration Eu3+-doped NaYb(MoO4)2 multifunctional material: Thermometer and plant growth lamp matching phytochrome PR. Journal of Alloys and Compounds, 2019, 782, 203-208.	5.5	41
34	Investigation on the up-conversion luminescence and temperature sensing properties based on non-thermally coupled levels of rare earth ions doped Ba2In2O5 phosphor. Journal of Luminescence, 2019, 206, 273-277.	3.1	18
35	Designing down- and up-conversion dual-mode luminescence of lanthanide-doped phosphors for temperature sensing. Journal of Luminescence, 2019, 206, 176-184.	3.1	14
36	One pot synthesis and optimized luminescent intensity of Gd2(WO4)3: Yb3+/Ho3+@SiO2 nanoparticles for biological application. Journal of Luminescence, 2019, 206, 1-5.	3.1	14

ZUOLING FU

#	Article	IF	CITATIONS
37	Investigation on Two Forms of Temperature-Sensing Parameters for Fluorescence Intensity Ratio Thermometry Based on Thermal Coupled Theory. Inorganic Chemistry, 2018, 57, 1213-1219.	4.0	81
38	A novel upconversion luminescent material: Li + - or Mg 2+ -codoped Bi 3.84 W 0.16 O 6.24 :Tm 3+ , Yb 3+ phosphors and their temperature sensing properties. Dyes and Pigments, 2018, 151, 287-295.	3.7	39
39	Fiber gas sensor-integrated smart face mask for room-temperature distinguishing of target gases. Nano Research, 2018, 11, 511-519.	10.4	75
40	Investigating the Luminescence Behaviors and Temperature Sensing Properties of Rare-Earth-Doped Ba ₂ In ₂ O ₅ Phosphors. Inorganic Chemistry, 2018, 57, 8841-8849.	4.0	74
41	Nanostructured La2O3: Yb3+/Er3+: Temperature sensing, optical heating and bio-imaging application. Materials Research Bulletin, 2017, 92, 39-45.	5.2	48
42	Temperature sensing and bio-imaging applications based on polyethylenimine/CaF2 nanoparticles with upconversion fluorescence. Talanta, 2017, 169, 181-188.	5.5	34
43	High sensitivity thermometry and optical heating Bi-function of Yb3+/Tm3+ Co-doped BaGd2ZnO5 phosphors. Current Applied Physics, 2017, 17, 255-261.	2.4	31
44	Inhomogeneous-Broadening-Induced Intense Upconversion Luminescence in Tm3+ and Yb3+ Codoped Lu2O3–ZrO2 Disordered Crystals. Inorganic Chemistry, 2017, 56, 12291-12296.	4.0	4
45	Ln3+ (Er3+, Tm3+ and Ho3+)-doped NaYb(MoO4)2 upconversion phosphors as wide range temperature sensors with high sensitivity. Journal of Alloys and Compounds, 2017, 728, 476-483.	5.5	59
46	Study for optimizing the design of optical temperature sensor. Applied Physics Letters, 2017, 111, .	3.3	19
47	Thermal sensor and optical heater of upconversion phosphor: Yb 3+ /Er 3+ co-doped KY(MoO 4) 2. Physica B: Condensed Matter, 2017, 525, 149-153.	2.7	7
48	Optical thermometry and heating based on the upconversion fluorescence from Yb ³⁺ /Er ³⁺ co-doped NaLa(MoO ₄) ₂ phosphor. Journal of Materials Research, 2016, 31, 3482-3488.	2.6	4
49	Temperature-induced phase transition and temperature sensing behavior in Yb3+ sensitized Er3+ doped YPO4 phosphors. Optical Materials, 2016, 60, 526-532.	3.6	35
50	Investigation into optical heating and applicability of the thermal sensor bifunctional properties of Yb ³⁺ sensitized Tm ³⁺ doped Y ₂ O ₃ , YAG and LaAlO ₃ phosphors. RSC Advances, 2016, 6, 97676-97683.	3.6	28
51	Color-tunable up-conversion emission from Yb3+/Er3+/Tm3+/Ho3+ codoped KY(MoO4)2 microcrystals based on energy transfer. Ceramics International, 2016, 42, 4642-4647.	4.8	25
52	Investigation into the temperature sensing behavior of Yb ³⁺ sensitized Er ³⁺ doped Y ₂ O ₃ , YAG and LaAlO ₃ phosphors. RSC Advances, 2015, 5, 51820-51827.	3.6	67
53	Hydrothermal synthesis and tunable luminescence of CaSiO3:RE3+(RE3+=Eu3+, Sm3+, Tb3+, Dy3+) nanocrystals. Materials Research Bulletin, 2015, 65, 315-319.	5.2	14
54	Up-conversion luminescent properties and optical thermometry of LaMgAl11O19: Yb3+/Er3+ phosphors. Ceramics International, 2015, 41, 14064-14069.	4.8	15

ZUOLING FU

#	Article	IF	CITATIONS
55	NaLa(MoO4)2: RE3+ (RE3+=Eu3+, Sm3+, Er3+/Yb3+) microspheres: the synthesis and optical properties. Materials Research Bulletin, 2015, 70, 779-783.	5.2	14
56	An Eu/Tb-codoped inorganic apatite Ca5(PO4)3F luminescent thermometer. Ceramics International, 2015, 41, 7010-7016.	4.8	25
57	Optical Temperature Sensing Behavior of Highâ€Efficiency Upconversion: Er ³⁺ –Yb ³⁺ Coâ€Doped NaY(MoO ₄) ₂ Phosphor. Journal of the American Ceramic Society, 2015, 98, 2595-2600.	3.8	144
58	Controlled morphology and EDTA-induced pure green upconversion luminescence of Er3+/Ho3+-Yb3+ co-doped NaCe(MoO4)2 phosphor. RSC Advances, 2015, 5, 70220-70228.	3.6	20
59	EDTA-mediated morphology and tunable optical properties of Eu3+-doped NaY(MoO4)2 phosphor. Journal of Materials Science: Materials in Electronics, 2015, 26, 6659-6666.	2.2	11
60	Investigation of structural and luminescent properties of Ce3+/Mn2+ ions-doped Ca5(PO4)3F. Materials Research Bulletin, 2014, 56, 65-70.	5.2	12
61	A novel and tunable upconversion luminescent material GdPO4: Yb3+, Ln3+ (Ln=Er, Tm, Ho). Materials Research Bulletin, 2014, 56, 138-142.	5.2	17
62	Hydrothermal synthesis and luminescence properties of Ca5(PO4)3F: Eu3+ microrods. Journal of Luminescence, 2014, 152, 226-229.	3.1	14
63	A self-luminous CaEuAl3O7 phosphor: Structural and optical characteristics. Ceramics International, 2014, 40, 10573-10576.	4.8	7
64	Hydrothermal synthesis, electronic structure and tunable luminescence of single-phase Ca ₅ (PO ₄) ₃ F:Tb ³⁺ ,Eu ³⁺ microrods. Dalton Transactions, 2014, 43, 2819-2827.	3.3	55
65	Controlled synthesis and tunable luminescence of uniform YPO ₄ ·0.8H ₂ O and YPO ₄ ·0.8H ₂ O : Tb ³⁺ /Eu ³⁺ nanocrystals by a facile approach. Journal of Materials Chemistry C, 2014, 2, 9149-9158.	5.5	28
66	Facile template free synthesis of KLa(MoO ₄) ₂ :Eu ³⁺ ,Tb ³⁺ microspheres and their multicolor tunable luminescence. Dalton Transactions, 2014, 43, 5382-5392.	3.3	61
67	Synthesis and investigation of luminescence properties of Eu3+-doped cubic perovskite Ba3Y2WO9. Optical Materials, 2013, 35, 1577-1581.	3.6	10
68	Solvothermal synthesis of CeF3: Tm3+, Yb3+ microcrystals with visible upconversion luminescence by 980nm excitation. Journal of Alloys and Compounds, 2013, 549, 362-365.	5.5	11
69	Solvothermal synthesis of CeF3: Er3+, Yb3+ nanoplates with visible upconversion luminescence by 980nm excitation. Materials Research Bulletin, 2013, 48, 884-888.	5.2	0
70	Solvothermal synthesis and luminescence properties of BaCeF5, and BaCeF5:Tb3+ nanocrystals. RSC Advances, 2012, 2, 4697.	3.6	13
71	Uniform Eu3+-doped YF3 microcrystals: inorganic salt-controlled synthesis and their luminescent properties. CrystEngComm, 2012, 14, 3915.	2.6	20
72	Highly uniform NaLa(MoO4)2:Ln3+ (Ln = Eu, Dy) microspheres: template-free hydrothermal synthesis, growing mechanism, and luminescent properties. CrystEngComm, 2012, 14, 4618.	2.6	46

#	Article	IF	CITATIONS
73	Investigation of photoluminescence properties of Eu3+-doped GdAlO3 and LaAlO3 by site-selective laser spectroscopy. Materials Letters, 2012, 74, 140-142.	2.6	10