
Christoph Raible

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7264932/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The 2010 Crafoord Prize awarded to Walter Munk. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 63, 189.	0.8	125
2	Variability of the ocean carbon cycle in response to the North Atlantic Oscillation. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 18738.	0.8	27
3	Atlantic hurricanes and associated insurance loss potentials in future climate scenarios: limitations of high-resolution AGCM simulations. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 64, 15672.	0.8	11
4	Lower-tropospheric humidity: climatology, trends and the relation to the ITCZ. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 65, 20413.	0.8	12
5	Objective climatology of cyclones in the Mediterranean region: a consensus view among methods with different system identification and tracking criteria. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 68, 29391.	0.8	79
6	Drought indices revisited – improving and testing of drought indices in a simulation of the last two millennia for Europe. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 69, 1296226.	0.8	30
7	Subantarctic cyclones identified by 14 tracking methods, and their role for moisture transports into the continent. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 70, 1454808.	0.8	43
8	Decadal variations of blocking and storm tracks in centennial reanalyses. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 71, 1586236.	0.8	15
9	Impact of climate change on the climatology of Vb cyclones. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 72, 1724021.	0.8	8
10	Droughts and societal change: The environmental context for the emergence of Islam in late Antique Arabia. Science, 2022, 376, 1317-1321.	6.0	18
11	The 852/3 CE Mount Churchill eruption: examining the potential climatic and societal impacts and the timing of the Medieval Climate Anomaly in the North Atlantic region. Climate of the Past, 2022, 18, 1475-1508.	1.3	7
12	The role of ice-sheet topography in the Alpine hydro-climate at glacial times. Climate of the Past, 2022, 18, 1579-1600.	1.3	6
13	A review of past changes in extratropical cyclones in the northern hemisphere and what can be learned for the future. Wiley Interdisciplinary Reviews: Climate Change, 2021, 12, .	3.6	15
14	Dynamics of the Mediterranean droughts from 850 to 2099 CE in the Community Earth System Model. Climate of the Past, 2021, 17, 887-911.	1.3	6
15	The role of land cover in the climate of glacial Europe. Climate of the Past, 2021, 17, 1161-1180.	1.3	12
16	Evaluating the dependence structure of compound precipitation and wind speed extremes. Earth System Dynamics, 2021, 12, 1-16.	2.7	46
17	Statistical characteristics of extreme daily precipitation during 1501 BCE–1849 CE in the Community Earth System Model. Climate of the Past, 2021, 17, 2031-2053.	1.3	1
18	North Atlantic Integrated Water Vapor Transport—From 850 to 2100 CE: Impacts on Western European Rainfall. Journal of Climate, 2020, 33, 263-279.	1.2	26

#	Article	IF	CITATIONS
19	Eastern Mediterranean summer temperatures since 730 CE from Mt. Smolikas tree-ring densities. Climate Dynamics, 2020, 54, 1367-1382.	1.7	32
20	Extreme climate after massive eruption of Alaska's Okmok volcano in 43 BCE and effects on the late Roman Republic and Ptolemaic Kingdom. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15443-15449.	3.3	57
21	A new bias-correction method for precipitation over complex terrain suitable for different climate states: a case study using WRF (version 3.8.1). Geoscientific Model Development, 2020, 13, 5007-5027.	1.3	25
22	Perspectives of regional paleoclimate modeling. Annals of the New York Academy of Sciences, 2019, 1436, 54-69.	1.8	32
23	Last phase of the Little Ice Age forced by volcanic eruptions. Nature Geoscience, 2019, 12, 650-656.	5.4	93
24	Nearâ€surface mean wind in Switzerland: Climatology, climate model evaluation and future scenarios. International Journal of Climatology, 2019, 39, 4798-4810.	1.5	10
25	Representation of Extratropical Cyclones, Blocking Anticyclones, and Alpine Circulation Types in Multiple Reanalyses and Model Simulations. Journal of Climate, 2018, 31, 3009-3031.	1.2	28
26	From global circulation to local flood loss: Coupling models across theÂscales. Science of the Total Environment, 2018, 635, 1225-1239.	3.9	30
27	A new region-aware bias-correction method for simulated precipitation in areas of complex orography. Geoscientific Model Development, 2018, 11, 2231-2247.	1.3	15
28	Extratropical cyclone statistics during the last millennium and the 21st century. Climate of the Past, 2018, 14, 1499-1514.	1.3	30
29	Stable Equatorial Ice Belts at High Obliquity in a Coupled Atmosphere–Ocean Model. Astrophysical Journal, 2018, 864, 106.	1.6	21
30	Palaeoclimate constraints on the impact of 2 °C anthropogenic warming and beyond. Nature Geoscience, 2018, 11, 474-485.	5.4	166
31	Impact of variations of gravitational acceleration on the general circulation of the planetary atmosphere. Planetary and Space Science, 2017, 135, 1-16.	0.9	5
32	Projected drought risk in 1.5°C and 2°C warmer climates. Geophysical Research Letters, 2017, 44, 7419-7428.	1.5	227
33	Multiple Climate States of Habitable Exoplanets: The Role of Obliquity and Irradiance. Astrophysical Journal, 2017, 844, 147.	1.6	45
34	Impacts of surface boundary conditions on regional climate model simulations of European climate during the Last Glacial Maximum. Geophysical Research Letters, 2017, 44, 5086-5095.	1.5	37
35	Sensitivity experiments on the response of Vb cyclones to sea surface temperature and soil moisture changes. Earth System Dynamics, 2017, 8, 477-493.	2.7	30
36	Pseudo-proxy tests of the analogue method to reconstruct spatially resolved global temperature during the Common Era. Climate of the Past, 2017, 13, 629-648.	1.3	19

#	Article	IF	CITATIONS
37	The 1430s: a cold period of extraordinary internal climate variability during the early Sp¶rer Minimum with social and economic impacts in north-western and central Europe. Climate of the Past, 2016, 12, 2107-2126.	1.3	66
38	Warm Greenland during the last interglacial: the role of regional changes in sea ice cover. Climate of the Past, 2016, 12, 2011-2031.	1.3	15
39	Intensification of tropical Pacific biological productivity due to volcanic eruptions. Geophysical Research Letters, 2016, 43, 1184-1192.	1.5	21
40	Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 569-589.	3.6	105
41	Stratospheric age of air variations between 1600 and 2100. Geophysical Research Letters, 2016, 43, 5409-5418.	1.5	9
42	The influence of absorbed solar radiation by Saharan dust on hurricane genesis. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1902-1917.	1.2	27
43	Detecting changes in marine responses to ENSO from 850 to 2100 C.E.: Insights from the ocean carbon cycle. Geophysical Research Letters, 2015, 42, 518-525.	1.5	19
44	The impacts of volcanic aerosol on stratospheric ozone and the Northern Hemisphere polar vortex: separating radiative-dynamical changes from direct effects due to enhanced aerosol heterogeneous chemistry. Atmospheric Chemistry and Physics, 2015, 15, 11461-11476.	1.9	23
45	Nonâ€exponential return time distributions for vorticity extremes explained by fractional Poisson processes. Quarterly Journal of the Royal Meteorological Society, 2015, 141, 249-257.	1.0	28
46	Reconciling reconstructed and simulated features of the winter Pacific/North American pattern in the early 19th century. Climate of the Past, 2015, 11, 939-958.	1.3	19
47	Climate and carbon cycle dynamics in a CESM simulation from 850 to 2100 CE. Earth System Dynamics, 2015, 6, 411-434.	2.7	52
48	Sensitivity of the WRF model to PBL parametrisations and nesting techniques: evaluation of wind storms over complex terrain. Geoscientific Model Development, 2015, 8, 3349-3363.	1.3	68
49	A regional climate palaeosimulation for Europe in the period 1500–1990 – Part 2: Shortcomings and strengths of models and reconstructions. Climate of the Past, 2015, 11, 1077-1095.	1.3	26
50	Continental-scale temperature variability in PMIP3 simulations and PAGES 2k regional temperature reconstructions over the past millennium. Climate of the Past, 2015, 11, 1673-1699.	1.3	98
51	Climatology of Vb cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe. Earth System Dynamics, 2015, 6, 541-553.	2.7	53
52	A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature, 2015, 523, 71-74.	13.7	255
53	North Atlantic Eddy-Driven Jet in Interglacial and Glacial Winter Climates. Journal of Climate, 2015, 28, 3977-3997.	1.2	69
54	Contrasting interannual and multidecadal NAO variability. Climate Dynamics, 2015, 45, 539-556.	1.7	120

#	Article	IF	CITATIONS
55	Impact of solar versus volcanic activity variations on tropospheric temperatures and precipitation during the Dalton Minimum. Climate of the Past, 2014, 10, 921-938.	1.3	48
56	Time of emergence of trends in ocean biogeochemistry. Biogeosciences, 2014, 11, 3647-3659.	1.3	81
57	Changing correlation structures of the Northern Hemisphere atmospheric circulation from 1000 to 2100 AD. Climate of the Past, 2014, 10, 537-550.	1.3	53
58	Dependence of Eemian Greenland temperature reconstructions on the ice sheet topography. Climate of the Past, 2014, 10, 1221-1238.	1.3	27
59	The coupled atmosphere–chemistry–ocean model SOCOL-MPIOM. Geoscientific Model Development, 2014, 7, 2157-2179.	1.3	44
60	Influence of ice sheet topography on Greenland precipitation during the Eemian interglacial. Journal of Geophysical Research D: Atmospheres, 2014, 119, 10,749-10,768.	1.2	19
61	Climate change in Switzerland: a review of physical, institutional, and political aspects. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5, 461-481.	3.6	21
62	Inter-hemispheric temperature variability over the past millennium. Nature Climate Change, 2014, 4, 362-367.	8.1	240
63	Northern hemispheric winter warming pattern after tropical volcanic eruptions: Sensitivity to the ozone climatology. Journal of Geophysical Research D: Atmospheres, 2014, 119, 1340-1355.	1.2	20
64	Corrigendum to "Dependence of Eemian Greenland temperature reconstructions on the ice sheet topography" published in Clim. Past, 10, 1221–1238, 2014. Climate of the Past, 2014, 10, 1603-1604.	1.3	0
65	Is the Atlantic subpolar gyre bistable in comprehensive coupled climate models?. Climate Dynamics, 2013, 40, 2993-3007.	1.7	33
66	Impact of a potential 21st century "grand solar minimum―on surface temperatures and stratospheric ozone. Geophysical Research Letters, 2013, 40, 4420-4425.	1.5	38
67	IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms. Bulletin of the American Meteorological Society, 2013, 94, 529-547.	1.7	391
68	Spectral biases in tree-ring climate proxies. Nature Climate Change, 2013, 3, 360-364.	8.1	125
69	Atmospheric CO ₂ response to volcanic eruptions: The role of ENSO, season, and variability. Global Biogeochemical Cycles, 2013, 27, 239-251.	1.9	53
70	Amplified Inception of European Little Ice Age by Sea Ice–Ocean–Atmosphere Feedbacks. Journal of Climate, 2013, 26, 7586-7602.	1.2	81
71	Forcing of stratospheric chemistry and dynamics during the Dalton Minimum. Atmospheric Chemistry and Physics, 2013, 13, 10951-10967.	1.9	20
72	Are Greenhouse Gas Signals of Northern Hemisphere winter extra-tropical cyclone activity dependent on the identification and tracking algorithm?. Meteorologische Zeitschrift, 2013, 22, 61-68.	0.5	77

#	Article	IF	CITATIONS
73	Investigating the sensitivity of hurricane intensity and trajectory to sea surface temperatures using the regional model WRF. Meteorologische Zeitschrift, 2013, 22, 685-698.	0.5	11
74	Large-scale temperature response to external forcing in simulations and reconstructions of the last millennium. Climate of the Past, 2013, 9, 393-421.	1.3	131
75	Greenland accumulation and its connection to the large-scale atmospheric circulation in ERA-Interim and paleoclimate simulations. Climate of the Past, 2013, 9, 2433-2450.	1.3	22
76	Simulated winter circulation types in the North Atlantic and European region for preindustrial and glacial conditions. Geophysical Research Letters, 2012, 39, .	1.5	35
77	Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quaternary Science Reviews, 2012, 45, 85-94.	1.4	77
78	North Atlantic storminess and Atlantic Meridional Overturning Circulation during the last Millennium: Reconciling contradictory proxy records of NAO variability. Global and Planetary Change, 2012, 84-85, 48-55.	1.6	163
79	Climate variability of the mid- and high-latitudes of the Southern Hemisphere in ensemble simulations from 1500 to 2000 AD. Climate of the Past, 2012, 8, 373-390.	1.3	16
80	Past and recent changes in the North Atlantic oscillation. Wiley Interdisciplinary Reviews: Climate Change, 2012, 3, 79-90.	3.6	129
81	The freshwater balance of polar regions in transient simulations from 1500 to 2100 AD using a comprehensive coupled climate model. Climate Dynamics, 2012, 39, 347-363.	1.7	18
82	The impact of different glacial boundary conditions on atmospheric dynamics and precipitation in the North Atlantic region. Climate of the Past, 2012, 8, 935-949.	1.3	54
83	Sensitivity of atmospheric CO ₂ and climate to explosive volcanic eruptions. Biogeosciences, 2011, 8, 2317-2339.	1.3	46
84	Variations of the Atlantic meridional overturning circulation in control and transient simulations of the last millennium. Climate of the Past, 2011, 7, 133-150.	1.3	50
85	Future storm surge impacts on insurable losses for the North Sea region. Natural Hazards and Earth System Sciences, 2011, 11, 1205-1216.	1.5	15
86	Causes and Consequences of Past and Projected Scandinavian Summer Temperatures, 500–2100 AD. PLoS ONE, 2011, 6, e25133.	1.1	39
87	Simulated decadal oscillations of the Atlantic meridional overturning circulation in a cold climate state. Climate Dynamics, 2010, 34, 101-121.	1.7	45
88	Winter synoptic-scale variability over the Mediterranean Basin under future climate conditions as simulated by the ECHAM5. Climate Dynamics, 2010, 35, 473-488.	1.7	65
89	Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature, 2010, 463, 527-530.	13.7	256
90	Transient climate simulations from the Maunder Minimum to present day: Role of the stratosphere. Journal of Geophysical Research, 2010, 115, .	3.3	28

#	Article	IF	CITATIONS
91	Simulated resumption of the North Atlantic meridional overturning circulation – Slow basin-wide advection and abrupt local convection. Quaternary Science Reviews, 2010, 29, 101-112.	1.4	34
92	Timing and climatic impact of Greenland interstadials recorded in stalagmites from northern Turkey. Geophysical Research Letters, 2009, 36, .	1.5	379
93	Tropical cyclones in ERAâ€40: A detection and tracking method. Geophysical Research Letters, 2008, 35, .	1.5	17
94	Northern Hemisphere Extratropical Cyclones: A Comparison of Detection and Tracking Methods and Different Reanalyses. Monthly Weather Review, 2008, 136, 880-897.	0.5	186
95	On the relation between extremes of midlatitude cyclones and the atmospheric circulation using ERA40. Geophysical Research Letters, 2007, 34, .	1.5	66
96	Extreme midlatitude cyclones and their implications for precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions. Climate Dynamics, 2007, 28, 409-423.	1.7	94
97	The influence of regional circulation patterns on wet and dry mineral dust and sea salt deposition over Greenland. Climate Dynamics, 2007, 28, 635-647.	1.7	15
98	A European pattern climatology 1766–2000. Climate Dynamics, 2007, 29, 791-805.	1.7	127
99	Climate Variability-Observations, Reconstructions, and Model Simulations for the Atlantic-European and Alpine Region from 1500-2100 AD. Climatic Change, 2006, 79, 9-29.	1.7	74
100	On the interpretation of low-latitude hydrological proxy records based on Maunder Minimum AOGCM simulations. Climate Dynamics, 2006, 27, 493-513.	1.7	10
101	Climate variability — observations, reconstructions, and model simulations for the Atlantic-European and Alpine region from 1500–2100 AD. , 2006, , 9-29.		3
102	Decadal cyclone variability in the North Atlantic. Meteorologische Zeitschrift, 2005, 14, 747-753.	0.5	16
103	Northern Hemispheric Trends of Pressure Indices and Atmospheric Circulation Patterns in Observations, Reconstructions, and Coupled GCM Simulations. Journal of Climate, 2005, 18, 3968-3982.	1.2	51
104	Water cycle shifts gear. Nature, 2005, 434, 830-833.	13.7	72
105	Recurrent climate winter regimes in reconstructed and modelled 500ÂhPa geopotential height fields over the North Atlantic/European sector 1659–1990. Climate Dynamics, 2005, 24, 809-822.	1.7	35
106	Externally Forced and Internal Variability in Ensemble Climate Simulations of the Maunder Minimum. Journal of Climate, 2005, 18, 4253-4270.	1.2	76
107	Reconstructing climate variability from Greenland ice sheet accumulation: An ERA40 study. Geophysical Research Letters, 2005, 32, .	1.5	21
108	Northern Hemisphere midlatitude cyclone variability in GCM simulations with different ocean representations. Climate Dynamics, 2004, 22, 239-248.	1.7	40

#	Article	IF	CITATIONS
109	Precipitation and Northern Hemisphere regimes. Atmospheric Science Letters, 2004, 5, 43-55.	0.8	36
110	Predictability study of the observed and simulated European climate using linear regression. Quarterly Journal of the Royal Meteorological Society, 2003, 129, 2299-2313.	1.0	16
111	Analog Ensemble Forecasts of Tropical Cyclone Tracks in the Australian Region. Weather and Forecasting, 2003, 18, 3-11.	0.5	26
112	North Atlantic decadal regimes in a coupled GCM simulation. Climate Dynamics, 2001, 18, 321-330.	1.7	61
113	Self-Adapting Analog Ensemble Predictions of Tropical Cyclone Tracks. Weather and Forecasting, 2000, 15, 623-629.	0.5	22
114	Statistical Single-Station Short-Term Forecasting of Temperature and Probability of Precipitation: Area Interpolation and NWP Combination. Weather and Forecasting, 1999, 14, 203-214.	0.5	13