Amy L Milton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7264875/publications.pdf

Version: 2024-02-01

46 papers

2,819 citations

331670 21 h-index 289244 40 g-index

98 all docs 98 docs citations 98 times ranked 2171 citing authors

#	Article	IF	Citations
1	Manipulating Reconsolidation to Weaken Drug Memory. Neuromethods, 2022, , 315-330.	0.3	O
2	Lack of Effect of Propranolol on the Reconsolidation of Conditioned Fear Memory due to a Failure to Engage Memory Destabilisation. Neuroscience, 2022, 480, 9-18.	2.3	8
3	Deconstructing and reconstructing behaviour relevant to mental health disorders: The benefits of a psychological approach, with a focus on addiction. Neuroscience and Biobehavioral Reviews, 2022, 133, 104514.	6.1	6
4	Targeting drug memory reconsolidation: a neural analysis. Current Opinion in Pharmacology, 2021, 56, 7-12.	3.5	13
5	To catch a memory through covert ops. Nature Neuroscience, 2021, 24, 617-619.	14.8	1
6	Dissociable dopaminergic and pavlovian influences in goal-trackers and sign-trackers on a model of compulsive checking in OCD. Psychopharmacology, 2020, 237, 3569-3581.	3.1	5
7	Retrieval-Dependent Mechanisms Affecting Emotional Memory Persistence: Reconsolidation, Extinction, and the Space in Between. Frontiers in Behavioral Neuroscience, 2020, 14, 574358.	2.0	16
8	Retrieval-Extinction and Relapse Prevention: Rewriting Maladaptive Drug Memories?. Frontiers in Behavioral Neuroscience, 2020, 14, 23.	2.0	17
9	Checking responses of goal- and sign-trackers are differentially affected by threat in a rodent analog of obsessive–compulsive disorder. Learning and Memory, 2020, 27, 190-200.	1.3	5
10	Neurochemical and molecular mechanisms underlying the retrieval-extinction effect. Psychopharmacology, 2019, 236, 111-132.	3.1	34
11	The role of prediction error and memory destabilization in extinction of cued-fear within the reconsolidation window. Neuropsychopharmacology, 2019, 44, 1762-1768.	5.4	19
12	Editorial: the psychopharmacology of extinctionâ€"from theory to therapy. Psychopharmacology, 2019, 236, 1-6.	3.1	13
13	Fear not: recent advances in understanding the neural basis of fear memories and implications for treatment development. F1000Research, 2019, 8, 1948.	1.6	9
14	Saccharin fading is not required for the acquisition of alcohol self-administration, and can alter the dynamics of cue-alcohol memory reconsolidation. Psychopharmacology, 2018, 235, 1069-1082.	3.1	14
15	A Novel Retrieval-Dependent Memory Process Revealed by the Arrest of ERK1/2 Activation in the Basolateral Amygdala. Journal of Neuroscience, 2018, 38, 3199-3207.	3. 6	37
16	Of mice and mental health: facilitating dialogue and seeing further. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170022.	4.0	11
17	Knockdown of zif268 in the Posterior Dorsolateral Striatum Does Not Enduringly Disrupt a Response Memory of a Rewarded T-Maze Task. Neuroscience, 2018, 370, 112-120.	2.3	4
18	A re-examination of responding on ratio and regulated-probability interval schedules. Learning and Motivation, 2018, 64, 1-8.	1.2	6

#	Article	lF	CITATIONS
19	Reconsolidation blockade for the treatment of addiction: challenges, new targets, and opportunities. Learning and Memory, 2018, 25, 492-500.	1.3	36
20	The chains of habits: too strong to be broken by reconsolidation blockade?. Current Opinion in Behavioral Sciences, 2017, 13, 158-163.	3.9	12
21	Bidirectional Modulation of Alcohol-Associated Memory Reconsolidation through Manipulation of Adrenergic Signaling. Neuropsychopharmacology, 2016, 41, 1103-1111.	5.4	35
22	Amygdala Dopamine Receptors Are Required for the Destabilization of a Reconsolidating Appetitive Memory. ENeuro, 2015, 2, ENEURO.0024-14.2015.	1.9	29
23	Enhancing cognition by affecting memory reconsolidation. Current Opinion in Behavioral Sciences, 2015, 4, 41-47.	3.9	12
24	Computer Game Play Reduces Intrusive Memories of Experimental Trauma via Reconsolidation-Update Mechanisms. Psychological Science, 2015, 26, 1201-1215.	3.3	219
25	Reconsolidation and Extinction Are Dissociable and Mutually Exclusive Processes: Behavioral and Molecular Evidence. Journal of Neuroscience, 2014, 34, 2422-2431.	3.6	231
26	The CB1 Receptor Antagonist AM251 Impairs Reconsolidation of Pavlovian Fear Memory in the Rat Basolateral Amygdala. Neuropsychopharmacology, 2014, 39, 2529-2537.	5.4	40
27	Double Dissociation of the Requirement for GluN2B- and GluN2A-Containing NMDA Receptors in the Destabilization and Restabilization of a Reconsolidating Memory. Journal of Neuroscience, 2013, 33, 1109-1115.	3.6	165
28	Drink, drugs and disruption: memory manipulation for the treatment of addiction. Current Opinion in Neurobiology, 2013, 23, 706-712.	4.2	47
29	NANOSYMPOSIUM N 3 MALADAPTIVE ASSOCIATIVE MEMORIES. Behavioural Pharmacology, 2013, 24, e20.	1.7	O
30	H.8 - THE TRANSITION FROM RECONSOLIDATION TO EXTINCTION OF FEAR MEMORY IS DEPENDENT ON NEWLY SYNTHESIZED CALCINEURIN IN THE AMYGDALA. Behavioural Pharmacology, 2013, 24, e62.	1.7	0
31	NS.3.2 - THE CB1 RECEPTOR ANTAGONIST AM251 INFUSION INTO THE BASOLATERAL AMYGDALA AT RETRIEVAL DISRUPTS FEAR MEMORY RECONSOLIDATION IN RATS. Behavioural Pharmacology, 2013, 24, e20.	1.7	0
32	H.7 - THE CB1 RECEPTOR ANTAGONIST AM251 INFUSION INTO THE BASOLATERAL AMYGDALA AT RETRIEVAL DISRUPTS FEAR MEMORY RECONSOLIDATION IN RATS. Behavioural Pharmacology, 2013, 24, e62.	1.7	0
33	Ketamine Effects on Memory Reconsolidation Favor a Learning Model of Delusions. PLoS ONE, 2013, 8, e65088.	2.5	51
34	The amygdala: securing pleasure and avoiding pain. Frontiers in Behavioral Neuroscience, 2013, 7, 190.	2.0	63
35	Wiping Drug Memories. Science, 2012, 336, 167-168.	12.6	21
36	The persistence of maladaptive memory: Addiction, drug memories and anti-relapse treatments. Neuroscience and Biobehavioral Reviews, 2012, 36, 1119-1139.	6.1	214

#	Article	IF	CITATION
37	Antagonism at NMDA receptors, but not \hat{l}^2 -adrenergic receptors, disrupts the reconsolidation of pavlovian conditioned approach and instrumental transfer for ethanol-associated conditioned stimuli. Psychopharmacology, 2012, 219, 751-761.	3.1	93
38	The psychological and neurochemical mechanisms of drug memory reconsolidation: implications for the treatment of addiction. European Journal of Neuroscience, 2010, 31, 2308-2319.	2.6	187
39	The basolateral amygdala and nucleus accumbens core mediate dissociable aspects of drug memory reconsolidation. Learning and Memory, 2010, 17, 444-453.	1.3	76
40	P.4.09 NMDA receptors and beta-adrenergic receptors as molecular targets for the prevention of relapse to drug-seeking. European Neuropsychopharmacology, 2009, 19, S86-S87.	0.7	7
41	Reconsolidation of appetitive memories for both natural and drug reinforcement is dependent on Î ² -adrenergic receptors. Learning and Memory, 2008, 15, 88-92.	1.3	145
42	Intra-Amygdala and Systemic Antagonism of NMDA Receptors Prevents the Reconsolidation of Drug-Associated Memory and Impairs Subsequently Both Novel and Previously Acquired Drug-Seeking Behaviors. Journal of Neuroscience, 2008, 28, 8230-8237.	3.6	184
43	Reconsolidation and Extinction of Conditioned Fear: Inhibition and Potentiation. Journal of Neuroscience, 2006, 26, 10051-10056.	3.6	447
44	Cue-Induced Cocaine Seeking and Relapse Are Reduced by Disruption of Drug Memory Reconsolidation. Journal of Neuroscience, 2006, 26, 5881-5887.	3.6	265
45	B48 NEUROPHARMACOLOGICAL MECHANISMS OF THE RECONSOLIDATION OF CS-DRUG MEMORIES: EFFECTS ON COCAINE SEEKING. Behavioural Pharmacology, 2005, 16, S80-S81.	1.7	0
46	Dissociation of hemi-spatial and hemi-motor impairments in a unilateral primate model of Parkinson's disease. Behavioural Brain Research, 2004, 150, 55-63.	2.2	21