Richard M Ransohoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7264751/publications.pdf Version: 2024-02-01

		1163	779
323	67,473	111	248
papers	citations	h-index	g-index
353	353	353	60369
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Neuroinflammation in Alzheimer's disease. Lancet Neurology, The, 2015, 14, 388-405.	4.9	4,129
2	Axonal Transection in the Lesions of Multiple Sclerosis. New England Journal of Medicine, 1998, 338, 278-285.	13.9	3,776
3	Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner. Neuron, 2012, 74, 691-705.	3.8	3,040
4	The Many Roles of Chemokines and Chemokine Receptors in Inflammation. New England Journal of Medicine, 2006, 354, 610-621.	13.9	2,207
5	Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nature Neuroscience, 2014, 17, 131-143.	7.1	2,056
6	Development, maintenance and disruption of the blood-brain barrier. Nature Medicine, 2013, 19, 1584-1596.	15.2	1,750
7	Immune attack: the role of inflammation in Alzheimer disease. Nature Reviews Neuroscience, 2015, 16, 358-372.	4.9	1,677
8	Microglial Physiology: Unique Stimuli, Specialized Responses. Annual Review of Immunology, 2009, 27, 119-145.	9.5	1,562
9	Single-cell transcriptomic analysis of Alzheimer's disease. Nature, 2019, 570, 332-337.	13.7	1,528
10	How neuroinflammation contributes to neurodegeneration. Science, 2016, 353, 777-783.	6.0	1,408
11	Control of microglial neurotoxicity by the fractalkine receptor. Nature Neuroscience, 2006, 9, 917-924.	7.1	1,334
12	A polarizing question: do M1 and M2 microglia exist?. Nature Neuroscience, 2016, 19, 987-991.	7.1	1,177
13	Reactive astrocyte nomenclature, definitions, and future directions. Nature Neuroscience, 2021, 24, 312-325.	7.1	1,098
14	A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. Brain, 2002, 125, 1450-1461.	3.7	1,078
15	Interferons at age 50: past, current and future impact on biomedicine. Nature Reviews Drug Discovery, 2007, 6, 975-990.	21.5	970
16	Three or more routes for leukocyte migration into the central nervous system. Nature Reviews Immunology, 2003, 3, 569-581.	10.6	934
17	Inflammatory Cortical Demyelination in Early Multiple Sclerosis. New England Journal of Medicine, 2011, 365, 2188-2197.	13.9	922
18	Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. Journal of Clinical Investigation, 1999, 103, 807-815.	3.9	919

#	Article	IF	CITATIONS
19	An environment-dependent transcriptional network specifies human microglia identity. Science, 2017, 356, .	6.0	911
20	Innate immunity in the central nervous system. Journal of Clinical Investigation, 2012, 122, 1164-1171.	3.9	805
21	The anatomical and cellular basis of immune surveillance in the central nervous system. Nature Reviews Immunology, 2012, 12, 623-635.	10.6	790
22	Differential roles of microglia and monocytes in the inflamed central nervous system. Journal of Experimental Medicine, 2014, 211, 1533-1549.	4.2	711
23	The myeloid cells of the central nervous system parenchyma. Nature, 2010, 468, 253-262.	13.7	670
24	Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. Nature Neuroscience, 2011, 14, 1227-1235.	7.1	606
25	Absence of Monocyte Chemoattractant Protein 1 in Mice Leads to Decreased Local Macrophage Recruitment and Antigen-Specific T Helper Cell Type 1 Immune Response in Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2001, 193, 713-726.	4.2	553
26	Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14759-14764.	3.3	541
27	TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. Journal of Experimental Medicine, 2015, 212, 287-295.	4.2	538
28	Regulation of Tau Pathology by the Microglial Fractalkine Receptor. Neuron, 2010, 68, 19-31.	3.8	532
29	Selective Chemokine Receptor Usage by Central Nervous System Myeloid Cells in CCR2-Red Fluorescent Protein Knock-In Mice. PLoS ONE, 2010, 5, e13693.	1.1	490
30	Human cerebrospinal fluid central memory CD4+T cells: Evidence for trafficking through choroid plexus and meninges via P-selectin. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 8389-8394.	3.3	486
31	Efficient derivation of microglia-like cells from human pluripotent stem cells. Nature Medicine, 2016, 22, 1358-1367.	15.2	486
32	Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain, 2006, 129, 200-211.	3.7	485
33	Astrocyte expression of mRNA encoding cytokines IPâ€10 and JE/MCPâ€1 in experimental autoimmune encephalomyelitis. FASEB Journal, 1993, 7, 592-600.	0.2	484
34	Axonal pathology in multiple sclerosis: relationship to neurologic disability. Current Opinion in Neurology, 1999, 12, 295-302.	1.8	425
35	Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain, 2015, 138, 1738-1755.	3.7	417
36	CX3CR1 Deficiency Alters Microglial Activation and Reduces Beta-Amyloid Deposition in Two Alzheimer's Disease Mouse Models. American Journal of Pathology, 2010, 177, 2549-2562.	1.9	403

#	Article	IF	CITATIONS
37	The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Seminars in Immunology, 2003, 15, 23-32.	2.7	374
38	A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. Journal of Experimental Medicine, 2015, 212, 447-456.	4.2	367
39	Chemokines and Chemokine Receptors: Standing at the Crossroads of Immunobiology and Neurobiology. Immunity, 2009, 31, 711-721.	6.6	341
40	The Chemokine Receptor CXCR2 Controls Positioning of Oligodendrocyte Precursors in Developing Spinal Cord by Arresting Their Migration. Cell, 2002, 110, 373-383.	13.5	337
41	Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2017, 37, 637-647.	1.7	329
42	Interferon-Induced Antiviral Actions and Their Regulation. Advances in Virus Research, 1993, 42, 57-102.	0.9	315
43	Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. Brain, 2018, 141, 422-458.	3.7	315
44	Microglial Physiology and Pathophysiology: Insights from Genome-wide Transcriptional Profiling. Immunity, 2016, 44, 505-515.	6.6	309
45	The Fractalkine Receptor but Not CCR2 Is Present on Microglia from Embryonic Development throughout Adulthood. Journal of Immunology, 2012, 188, 29-36.	0.4	305
46	Evidence for synaptic stripping by cortical microglia. Glia, 2007, 55, 360-368.	2.5	293
47	Animal models of multiple sclerosis: the good, the bad and the bottom line. Nature Neuroscience, 2012, 15, 1074-1077.	7.1	291
48	Multiple sclerosis—a quiet revolution. Nature Reviews Neurology, 2015, 11, 134-142.	4.9	286
49	Peroxisome Proliferator-Activated Receptor-Î ³ Activators Inhibit IFN-Î ³ -Induced Expression of the T Cell-Active CXC Chemokines IP-10, Mig, and I-TAC in Human Endothelial Cells. Journal of Immunology, 2000, 164, 6503-6508.	0.4	285
50	Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. Journal of Comparative Neurology, 2005, 489, 180-194.	0.9	281
51	Inflammatory cell trafficking across the blood–brain barrier: chemokine regulation and <i>in vitro</i> models. Immunological Reviews, 2012, 248, 228-239.	2.8	272
52	Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status epilepticus. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5665-74.	3.3	266
53	Astrocyte-Restricted Ablation of Interleukin-17-Induced Act1-Mediated Signaling Ameliorates Autoimmune Encephalomyelitis. Immunity, 2010, 32, 414-425.	6.6	265
54	The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB Journal, 2006, 20, 896-905.	0.2	263

#	Article	IF	CITATIONS
55	Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell–cell communication by chemokines. Trends in Pharmacological Sciences, 2015, 36, 471-480.	4.0	263
56	The expression and function of chemokines involved in CNS inflammation. Trends in Pharmacological Sciences, 2006, 27, 48-55.	4.0	260
57	Axon Loss in the Spinal Cord Determines Permanent Neurological Disability in an Animal Model of Multiple Sclerosis. Journal of Neuropathology and Experimental Neurology, 2002, 61, 23-32.	0.9	258
58	CCR1+/CCR5+ Mononuclear Phagocytes Accumulate in the Central Nervous System of Patients with Multiple Sclerosis. American Journal of Pathology, 2001, 159, 1701-1710.	1.9	238
59	Natalizumab for Multiple Sclerosis. New England Journal of Medicine, 2007, 356, 2622-2629.	13.9	238
60	Multiple sclerosis normalâ€appearing white matter: Pathology–imaging correlations. Annals of Neurology, 2011, 70, 764-773.	2.8	235
61	Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. Journal of Neuroimmunology, 2002, 127, 59-68.	1.1	231
62	Localizing central nervous system immune surveillance: Meningeal antigenâ€presenting cells activate T cells during experimental autoimmune encephalomyelitis. Annals of Neurology, 2009, 65, 457-469.	2.8	230
63	Macrophages recruited <i>via</i> CCR2 produce insulinâ€like growth factorâ€l to repair acute skeletal muscle injury. FASEB Journal, 2011, 25, 358-369.	0.2	225
64	CX3CR1 Protein Signaling Modulates Microglial Activation and Protects against Plaque-independent Cognitive Deficits in a Mouse Model of Alzheimer Disease. Journal of Biological Chemistry, 2011, 286, 32713-32722.	1.6	225
65	Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. Immunological Reviews, 2000, 177, 52-67.	2.8	224
66	Crosstalk Between Astrocytes and Microglia: An Overview. Frontiers in Immunology, 2020, 11, 1416.	2.2	224
67	Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. Nature Neuroscience, 2018, 21, 329-340.	7.1	220
68	The interferons: Biological effects, mechanisms of action, and use in multiple sclerosis. Annals of Neurology, 1995, 37, 7-15.	2.8	214
69	Inflammatory Cell Migration into the Central Nervous System: A Few New Twists on an Old Tale. Brain Pathology, 2007, 17, 243-250.	2.1	214
70	P2X7-Like Receptor Activation in Astrocytes Increases Chemokine Monocyte Chemoattractant Protein-1 Expression via Mitogen-Activated Protein Kinase. Journal of Neuroscience, 2001, 21, 7135-7142.	1.7	212
71	Isolation of murine microglial cells for RNA analysis or flow cytometry. Nature Protocols, 2006, 1, 1947-1951.	5.5	212
72	Microglia in Health and Disease. Cold Spring Harbor Perspectives in Biology, 2016, 8, a020560.	2.3	211

#	Article	IF	CITATIONS
73	Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18150-18155.	3.3	210
74	CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis. Nature Neuroscience, 2010, 13, 319-326.	7.1	209
75	The Chemokine Growth-Regulated Oncogene-α Promotes Spinal Cord Oligodendrocyte Precursor Proliferation. Journal of Neuroscience, 1998, 18, 10457-10463.	1.7	208
76	TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. Molecular Neurodegeneration, 2017, 12, 74.	4.4	208
77	Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nature Neuroscience, 2019, 22, 1075-1088.	7.1	207
78	Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. FASEB Journal, 2011, 25, 3344-3355.	0.2	192
79	Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion. Stem Cells, 2016, 34, 2026-2039.	1.4	189
80	Modulating CCR2 and CCL2 at the blood–brain barrier: relevance for multiple sclerosis pathogenesis. Brain, 2006, 129, 212-223.	3.7	188
81	Deficient CX3CR1 Signaling Promotes Recovery after Mouse Spinal Cord Injury by Limiting the Recruitment and Activation of Ly6Clo/iNOS+ Macrophages. Journal of Neuroscience, 2011, 31, 9910-9922.	1.7	188
82	Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury. , 1998, 53, 368-376.		186
83	Do chemokines mediate leukocyte recruitment in post-traumatic CNS inflammation?. Trends in Neurosciences, 1998, 21, 154-159.	4.2	184
84	Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Frontiers in Cellular Neuroscience, 2014, 8, 229.	1.8	182
85	Management of Multiple Sclerosis. New England Journal of Medicine, 1997, 337, 1604-1611.	13.9	179
86	G-CSF–mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood, 2011, 117, 4349-4357.	0.6	179
87	Act1 mediates IL-17–induced EAE pathogenesis selectively in NG2+ glial cells. Nature Neuroscience, 2013, 16, 1401-1408.	7.1	174
88	Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics, 2015, 12, 896-909.	2.1	170
89	Characterization of β-R1, a Gene That Is Selectively Induced by Interferon β (IFN-β) Compared with IFN-α. Journal of Biological Chemistry, 1996, 271, 22878-22884.	1.6	168
90	The Activation Status of Neuroantigen-specific T Cells in the Target Organ Determines the Clinical Outcome of Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2004, 199, 185-197.	4.2	163

#	Article	IF	CITATIONS
91	Non-Cell-Autonomous Effects of Presenilin 1 Variants on Enrichment-Mediated Hippocampal Progenitor Cell Proliferation and Differentiation. Neuron, 2008, 59, 568-580.	3.8	159
92	Chemokines and Chemokine Receptors in Neurological Disease: Raise, Retain, or Reduce?. Neurotherapeutics, 2007, 4, 590-601.	2.1	157
93	Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget, 2015, 6, 15077-15094.	0.8	154
94	Effects of neuromyelitis optica–IgG at the blood–brain barrier in vitro. Neurology: Neuroimmunology and NeuroInflammation, 2017, 4, e311.	3.1	153
95	Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines. Journal of Neuroimmunology, 1999, 98, 57-68.	1.1	152
96	The blood–brain barrier. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2016, 133, 39-59.	1.0	152
97	The Trem2 R47H variant confers loss-of-function-like phenotypes in Alzheimer's disease. Molecular Neurodegeneration, 2018, 13, 29.	4.4	147
98	Nuclear Receptors License Phagocytosis by Trem2 ⁺ Myeloid Cells in Mouse Models of Alzheimer's Disease. Journal of Neuroscience, 2015, 35, 6532-6543.	1.7	144
99	Severe Disease, Unaltered Leukocyte Migration, and Reduced IFN-γ Production in CXCR3â^'/â^' Mice with Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2006, 176, 4399-4409.	0.4	142
100	Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: a central role for IPâ€10. Brain, 2002, 125, 823-834.	3.7	139
101	Chemokines and Chemokine Receptors: Multipurpose Players in Neuroinflammation. International Review of Neurobiology, 2007, 82, 187-204.	0.9	138
102	Chemokine Receptor CXCR3: An Unexpected Enigma. Current Topics in Developmental Biology, 2005, 68, 149-181.	1.0	136
103	Natalizumab and PML. Nature Neuroscience, 2005, 8, 1275-1275.	7.1	130
104	Overexpression of Monocyte Chemotactic Protein-1/CCL2 in β-Amyloid Precursor Protein Transgenic Mice Show Accelerated Diffuse β-Amyloid Deposition. American Journal of Pathology, 2005, 166, 1475-1485.	1.9	130
105	Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues. Blood, 2008, 112, 256-263.	0.6	127
106	T cell–intrinsic ASC critically promotes TH17-mediated experimental autoimmune encephalomyelitis. Nature Immunology, 2016, 17, 583-592.	7.0	127
107	Chronic expression of monocyte chemoattractant proteinâ€l in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. FASEB Journal, 2005, 19, 761-772.	0.2	124
108	Human astrocytes proliferate in response to tumor necrosis factor alpha. Journal of Neuroimmunology, 1990, 30, 239-243.	1.1	121

#	Article	IF	CITATIONS
109	Microglial derived tumor necrosis factor-α drives Alzheimer's disease-related neuronal cell cycle events. Neurobiology of Disease, 2014, 62, 273-285.	2.1	120
110	Astrocytes as antigen-presenting cells: expression of IL-12/IL-23. Journal of Neurochemistry, 2005, 95, 331-340.	2.1	119
111	Lysophosphatidylcholine regulates human microvascular endothelial cell expression of chemokines. Journal of Molecular and Cellular Cardiology, 2003, 35, 1375-1384.	0.9	116
112	Ontogeny and Functions of Central Nervous System Macrophages. Journal of Immunology, 2014, 193, 2615-2621.	0.4	113
113	TNF-α mediates SDF-1α–induced NF-κB activation and cytotoxic effects in primary astrocytes. Journal of Clinical Investigation, 2001, 108, 425-435.	3.9	113
114	Glucose-regulated protein 78 autoantibody associates with blood-brain barrier disruption in neuromyelitis optica. Science Translational Medicine, 2017, 9, .	5.8	110
115	Elevated Levels of the Chemokine GRO-1 Correlate with Elevated Oligodendrocyte Progenitor Proliferation in the <i>Jimpy</i> Mutant. Journal of Neuroscience, 2000, 20, 2609-2617.	1.7	108
116	Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. Journal of Neuroscience Research, 2002, 68, 691-702.	1.3	107
117	BIN1 favors the spreading of Tau via extracellular vesicles. Scientific Reports, 2019, 9, 9477.	1.6	107
118	Expression of Chemokines RANTES, MIP-1α and GRO-α Correlates with Inflammation in Acute Experimental Autoimmune Encephalomyelitis. NeuroImmunoModulation, 1998, 5, 166-171.	0.9	104
119	Interferon-β impairs induction of HLA-DR antigen expression in cultured adult human astrocytes. Journal of Neuroimmunology, 1989, 23, 45-53.	1.1	100
120	Chemokines, mononuclear cells and the nervous system: heaven (or hell) is in the details. Current Opinion in Immunology, 2006, 18, 683-689.	2.4	100
121	CCL2 Accelerates Microglia-Mediated $\hat{A^2}$ Oligomer Formation and Progression of Neurocognitive Dysfunction. PLoS ONE, 2009, 4, e6197.	1.1	100
122	Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9953-9958.	3.3	98
123	Opposing Effects of Membrane-Anchored CX3CL1 on Amyloid and Tau Pathologies via the p38 MAPK Pathway. Journal of Neuroscience, 2014, 34, 12538-12546.	1.7	98
124	Investigating Chemokines and Chemokine Receptors in Patients With Multiple Sclerosis. Archives of Neurology, 2001, 58, 1975.	4.9	97
125	Cerebrospinal fluid abnormalities in a phase III trial of Avonex® (IFNβ-1a) for relapsing multiple sclerosis1Studies supported by the National Multiple Sclerosis Society (grants RG2019, RG2827); the NINDS (NS26321); and Biogen Inc.1. Journal of Neuroimmunology, 1999, 93, 8-14.	1.1	95
126	Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation. Journal of Leukocyte Biology, 2008, 84, 587-594.	1.5	93

8

#	Article	IF	CITATIONS
127	Natural killer cells modulate motor neuron-immune cell cross talk in models of Amyotrophic Lateral Sclerosis. Nature Communications, 2020, 11, 1773.	5.8	93
128	CXCL12 and CXCR4 in bone marrow physiology. Expert Review of Hematology, 2010, 3, 315-322.	1.0	92
129	Imatinib attenuates skeletal muscle dystrophy in <i>mdx</i> mice. FASEB Journal, 2009, 23, 2539-2548.	0.2	90
130	Expression of Fractalkine Receptor CX3CR1 on Cochlear Macrophages Influences Survival of Hair Cells Following Ototoxic Injury. JARO - Journal of the Association for Research in Otolaryngology, 2010, 11, 223-234.	0.9	89
131	Interferon-β specifically inhibits interferon-γ-induced class II major histocompatibility complex gene transcription in a human astrocytoma cell line. Journal of Neuroimmunology, 1991, 33, 103-112.	1.1	88
132	Microgliosis: the questions shape the answers. Nature Neuroscience, 2007, 10, 1507-1509.	7.1	87
133	Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. Journal of Immunological Methods, 2010, 352, 89-100.	0.6	85
134	Chemokine receptor CXCR2: Physiology regulator and neuroinflammation controller?. Journal of Neuroimmunology, 2012, 246, 1-9.	1.1	84
135	Chemokines in neurological disease models: correlation between chemokine expression patterns and inflammatory pathology. Journal of Leukocyte Biology, 1997, 62, 645-652.	1.5	81
136	Chemokine CXCL12 in neurodegenerative diseases: an SOS signal for stem cell-based repair. Trends in Neurosciences, 2012, 35, 619-628.	4.2	81
137	Rapid Remodeling of Tight Junctions during Paracellular Diapedesis in a Human Model of the Blood–Brain Barrier. Journal of Immunology, 2014, 193, 2427-2437.	0.4	81
138	VCAM-1-Positive Microglia Target Oligodendrocytes at the Border of Multiple Sclerosis Lesions. Journal of Neuropathology and Experimental Neurology, 2002, 61, 539-546.	0.9	80
139	TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. Journal of Clinical Investigation, 2018, 128, 5399-5412.	3.9	78
140	Caveolin-3 Upregulation Activates β-Secretase–Mediated Cleavage of the Amyloid Precursor Protein in Alzheimer's Disease. Journal of Neuroscience, 1999, 19, 6538-6548.	1.7	77
141	Should We Stop Saying â€~Glia' and â€~Neuroinflammation'?. Trends in Molecular Medicine, 2017, 23, 48	86 ££ \$0.	77
142	Alterations in the oligodendrocyte lineage, myelin, and white matter in adult mice lacking the chemokine receptor CXCR2. Glia, 2006, 54, 471-483.	2.5	76
143	Regulation of Adaptive Immunity by the Fractalkine Receptor during Autoimmune Inflammation. Journal of Immunology, 2013, 191, 1063-1072.	0.4	76
144	Systemic Lipopolysaccharide Induces Cochlear Inflammation and Exacerbates the Synergistic Ototoxicity of Kanamycin and Furosemide. JARO - Journal of the Association for Research in Otolaryngology, 2014, 15, 555-570.	0.9	76

#	Article	IF	CITATIONS
145	Sequential expression of chemokines in experimental autoimmune neuritis. Journal of Neuroimmunology, 2000, 110, 121-129.	1.1	75
146	Myelin Repair Is Accelerated by Inactivating CXCR2 on Nonhematopoietic Cells. Journal of Neuroscience, 2010, 30, 9074-9083.	1.7	75
147	Treatment of experimental autoimmune encephalomyelitis with the chemokine receptor antagonist Met-RANTES. Journal of Neuroimmunology, 2002, 128, 16-22.	1.1	74
148	Cellular Responses to Interferons and Other Cytokines: The JAK–STAT Paradigm. New England Journal of Medicine, 1998, 338, 616-618.	13.9	73
149	Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors. Brain, Behavior, and Immunity, 2016, 54, 233-242.	2.0	73
150	A whole-genome sequence study identifies genetic risk factors for neuromyelitis optica. Nature Communications, 2018, 9, 1929.	5.8	73
151	Analyses of phenotypic and functional characteristics of CX3CR1â€expressing natural killer cells. Immunology, 2011, 133, 62-73.	2.0	72
152	Depletion of Ly6G/C+ cells ameliorates delayed cerebral vasospasm in subarachnoid hemorrhage. Journal of Neuroimmunology, 2011, 232, 94-100.	1.1	72
153	Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?. PLoS ONE, 2015, 10, e0133392.	1.1	72
154	Bone Marrow Transplantation Confers Modest Benefits in Mouse Models of Huntington's Disease. Journal of Neuroscience, 2012, 32, 133-142.	1.7	71
155	IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nature Communications, 2017, 8, 15508.	5.8	71
156	Chemokine expression in GKO mice (lacking interferon-gamma) with experimental autoimmune encephalomyelitis. Journal of NeuroVirology, 1999, 5, 95-101.	1.0	70
157	Determinants of CCL5-driven mononuclear cell migration across the blood–brain barrier. Implications for therapeutically modulating neuroinflammation. Journal of Neuroimmunology, 2006, 179, 132-144.	1.1	70
158	Cutting Edge: The Silent Chemokine Receptor D6 Is Required for Generating T Cell Responses That Mediate Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2006, 177, 17-21.	0.4	70
159	D6 facilitates cellular migration and fluid flow to lymph nodes by suppressing lymphatic congestion. Blood, 2011, 118, 6220-6229.	0.6	70
160	MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. Journal of Experimental Medicine, 2014, 211, 887-907.	4.2	70
161	Regulation of human IP-10 gene expression in astrocytoma cells by inflammatory cytokines. , 1998, 54, 169-180.		69
162	Steroid-responsive encephalopathy associated with autoimmune thyroiditis and primary CNS demyelination. Journal of the Neurological Sciences, 2005, 228, 3-5.	0.3	69

#	Article	IF	CITATIONS
163	Haploinsufficiency of utrophin gene worsens skeletal muscle inflammation and fibrosis in mdx mice. Journal of the Neurological Sciences, 2008, 264, 106-111.	0.3	69
164	CXCR3 marks CD4+ memory T lymphocytes that are competent to migrate across a human brain microvascular endothelial cell layer. Journal of Neuroimmunology, 2004, 153, 150-157.	1.1	68
165	Do Chemokines Mediate Inflammatory Cell Invasion of the Central Nervous System Parenchyma?. Brain Pathology, 1994, 4, 135-143.	2.1	67
166	Interleukin-6 Protects Anterior Horn Neurons from Lethal Virus-Induced Injury. Journal of Neuroscience, 2003, 23, 481-492.	1.7	67
167	Enhanced axonal growth into a spinal cord contusion injury site in a strain of mouse (129X1/SvJ) with a diminished inflammatory response. Journal of Comparative Neurology, 2004, 474, 469-486.	0.9	66
168	Expression of Chemokine Receptors CCR1 and CCR5 Reflects Differential Activation of Mononuclear Phagocytes in Pattern II and Pattern III Multiple Sclerosis Lesions. Journal of Neuropathology and Experimental Neurology, 2004, 63, 262-273.	0.9	66
169	An in vitro blood–brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. Journal of Neuroscience Methods, 2014, 232, 165-172.	1.3	66
170	The roles of chemokine CXCL12 in embryonic and brain tumor angiogenesis. Seminars in Cancer Biology, 2009, 19, 111-115.	4.3	65
171	CXCL12-Induced Monocyte-Endothelial Interactions Promote Lymphocyte Transmigration Across an in Vitro Blood-Brain Barrier. Science Translational Medicine, 2012, 4, 119ra14.	5.8	65
172	Re-establishing immunological self-tolerance in autoimmune disease. Nature Medicine, 2012, 18, 54-58.	15.2	65
173	Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: The role of CX3CR1. Journal of Comparative Neurology, 2008, 506, 930-942.	0.9	64
174	Major Differences in the Responses of Primary Human Leukocyte Subsets to IFN-β. Journal of Immunology, 2010, 185, 5888-5899.	0.4	64
175	<i>Cx3cr1-</i> deficient microglia exhibit a premature aging transcriptome. Life Science Alliance, 2019, 2, e201900453.	1.3	64
176	Catalytically Active TYK2 Is Essential for Interferon-β-mediated Phosphorylation of STAT3 and Interferon-α Receptor-1 (IFNAR-1) but Not for Activation of Phosphoinositol 3-Kinase. Journal of Biological Chemistry, 1999, 274, 32507-32511.	1.6	63
177	Pertussis Toxin-Induced Reversible Encephalopathy Dependent on Monocyte Chemoattractant Protein-1 Overexpression in Mice. Journal of Neuroscience, 2002, 22, 10633-10642.	1.7	63
178	Imaging Correlates of Leukocyte Accumulation and CXCR4/CXCL12 in Multiple Sclerosis. Archives of Neurology, 2009, 66, 44-53.	4.9	63
179	AAV1/2-mediated CNS Gene Delivery of Dominant-negative CCL2 Mutant Suppresses Gliosis, β-amyloidosis, and Learning Impairment of APP/PS1 Mice. Molecular Therapy, 2009, 17, 803-809.	3.7	62
180	Monocytes Regulate T Cell Migration through the Glia Limitans during Acute Viral Encephalitis. Journal of Virology, 2010, 84, 4878-4888.	1.5	62

#	Article	IF	CITATIONS
181	Inhibitor of ÂB kinase is required to activate a subset of interferon Â-stimulated genes. Proceedings of the United States of America, 2004, 101, 7994-7998.	3.3	60
182	Monocyte chemoattractant protein (MCP)-1 is rapidly expressed by sympathetic ganglion neurons following axonal injury. NeuroReport, 2001, 12, 601-606.	0.6	59
183	CC Chemokine Receptor 8 in the Central Nervous System Is Associated with Phagocytic Macrophages. American Journal of Pathology, 2003, 162, 427-438.	1.9	59
184	IL-17-Induced Act1-Mediated Signaling Is Critical for Cuprizone-Induced Demyelination. Journal of Neuroscience, 2012, 32, 8284-8292.	1.7	58
185	CX ₃ CR1 deficiency delays acute skeletal muscle injury repair by impairing macrophage functions. FASEB Journal, 2016, 30, 380-393.	0.2	58
186	Alternative and Accessory Pathways in the Regulation of IFN-β-Mediated Gene Expression. Journal of Interferon and Cytokine Research, 2005, 25, 788-798.	0.5	57
187	Impaired respiratory function in <i>mdx</i> and <i>mdx/utrn</i> ^{<i>+/â^'</i>} mice. Muscle and Nerve, 2011, 43, 263-267.	1.0	56
188	CX3CR1â€dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation. European Journal of Immunology, 2016, 46, 1984-1996.	1.6	56
189	TNF-α down-regulates CXCR4 expression in primary murine astrocytes. Brain Research, 2001, 888, 1-10.	1.1	54
190	All (animal) models (of neurodegeneration) are wrong. Are they also useful?. Journal of Experimental Medicine, 2018, 215, 2955-2958.	4.2	54
191	A Protective Role for ELR+ Chemokines during Acute Viral Encephalomyelitis. PLoS Pathogens, 2009, 5, e1000648.	2.1	53
192	CXCR3-Dependent Plasma Blast Migration to the Central Nervous System during Viral Encephalomyelitis. Journal of Virology, 2011, 85, 6136-6147.	1.5	53
193	Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease. Journal of Neuroscience, 2017, 37, 637-647.	1.7	52
194	Treatment with BBB022A or rolipram stabilizes the blood-brain barrier in experimental autoimmune encephalomyelitis: an additional mechanism for the therapeutic effect of type IV phosphodiesterase inhibitors. Journal of Neuroimmunology, 1999, 97, 119-128.	1.1	51
195	α4 Integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. Journal of Neuroimmunology, 2009, 210, 92-99.	1.1	51
196	CCL2 recruitment of ILâ€6â€producing CD11b ⁺ monocytes to the draining lymph nodes during the initiation of Th17â€dependent B cellâ€mediated autoimmunity. European Journal of Immunology, 2008, 38, 1877-1888.	1.6	49
197	Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. ELife, 2020, 9, .	2.8	49
198	CXCR2 Signaling Protects Oligodendrocytes and Restricts Demyelination in a Mouse Model of Viral-Induced Demyelination. PLoS ONE, 2010, 5, e11340.	1.1	48

#	Article	IF	CITATIONS
199	Transforming growth factor-β1 differentially regulates proliferation and MHC class-II antigen expression in forebrain and brainstem astrocyte primary cultures. Brain Research, 1992, 585, 229-236.	1.1	47
200	MCP-1 and CCR2 Contribute to Non-Lymphocyte-Mediated Brain Disease Induced by Fr98 Polytropic Retrovirus Infection in Mice: Role for Astrocytes in Retroviral Neuropathogenesis. Journal of Virology, 2004, 78, 6449-6458.	1.5	47
201	CCR5 expression on monocytes and T cells: Modulation by transmigration across the blood–brain barrier in vitro. Cellular Immunology, 2006, 243, 19-29.	1.4	47
202	Astrocyte differentiation selectively upregulates CCL2/monocyte chemoattractant protein-1 in cultured human brain-derived progenitor cells. Clia, 2006, 53, 81-91.	2.5	47
203	The Epstein-Barr virus oncoprotein latent membrane protein 1 induces expression of the chemokine IP-10: Importance of mRNA half-life regulation. International Journal of Cancer, 2005, 114, 598-605.	2.3	46
204	CC Chemokine Receptor 2 is Protective Against Noise-Induced Hair Cell Death: Studies in CX3CR1+/GFP Mice. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 361-372.	0.9	46
205	PDGF Synergistically Enhances IFN-Î ³ -Induced Expression of CXCL10 in Blood-Derived Macrophages: Implications for HIV Dementia. Journal of Immunology, 2007, 179, 2722-2730.	0.4	46
206	Inflammatory progressive multifocal leukoencephalopathy in human immunodeficiency virus-negative patients. Annals of Neurology, 2007, 62, 34-39.	2.8	46
207	Novel interferon-β-induced gene expression in peripheral blood cells. Journal of Leukocyte Biology, 2007, 82, 1353-1360.	1.5	44
208	Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1I249/M280 Variant. Frontiers in Cellular Neuroscience, 2018, 12, 365.	1.8	44
209	Etiology and Pathogenesis of Multiple Sclerosis. Seminars in Neurology, 1998, 18, 287-294.	0.5	43
210	Constitutive Expression of Growth-related Oncogene and Its Receptor in Oligodendrogliomas. Neurosurgery, 2001, 48, 864-874.	0.6	43
211	Interferon Signaling Is Dependent on Specific Tyrosines Located within the Intracellular Domain of IFNAR2c. Journal of Biological Chemistry, 2002, 277, 1493-1499.	1.6	43
212	Key role of CXCL13/CXCR5 axis for cerebrospinal fluid B cell recruitment in pediatric OMS. Journal of Neuroimmunology, 2012, 243, 81-88.	1.1	43
213	Leukemia Inhibitory Factor Deficiency Modulates the Immune Response and Limits Autoimmune Demyelination: A New Role for Neurotrophic Cytokines in Neuroinflammation. Journal of Immunology, 2008, 180, 2204-2213.	0.4	42
214	CXCR2 signaling protects oligodendrocyte progenitor cells from IFN-Î ³ /CXCL10-mediated apoptosis. Glia, 2011, 59, 1518-1528.	2.5	42
215	Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease. Journal of Neurotrauma, 2016, 33, 625-640.	1.7	42
216	Matrix metalloprotease-9 release from monocytes increases as a function of differentiation: implications for neuroinflammation and neurodegeneration. Journal of Neuroimmunology, 2000, 109, 221-227.	1.1	41

#	Article	IF	CITATIONS
217	Chemokine receptor antagonism as a new therapy for multiple sclerosis. Expert Opinion on Investigational Drugs, 2000, 9, 1079-1097.	1.9	41
218	Memory CD4 ⁺ T-Cell-Mediated Protection from Lethal Coronavirus Encephalomyelitis. Journal of Virology, 2008, 82, 12432-12440.	1.5	41
219	Experimental Autoimmune Encephalomyelitis: CC Chemokine Receptor Expression by Trafficking Cells. Journal of Autoimmunity, 2002, 19, 175-181.	3.0	40
220	Comparison of ventricular and lumbar cerebrospinal fluid T cells in non-inflammatory neurological disorder (NIND) patients. Journal of Neuroimmunology, 2005, 163, 179-184.	1.1	40
221	Chemokine receptor CXCR4 signaling modulates the growth factorâ€induced cell cycle of selfâ€renewing and multipotent neural progenitor cells. Glia, 2011, 59, 108-118.	2.5	40
222	Immunological and clinical consequences of treating a patient with natalizumab. Multiple Sclerosis Journal, 2012, 18, 335-344.	1.4	40
223	New BBB Model Reveals That IL-6 Blockade Suppressed the BBB Disorder, Preventing Onset of NMOSD. Neurology: Neuroimmunology and NeuroInflammation, 2021, 8, .	3.1	40
224	Requirement of Phosphoinositide 3-Kinase and Akt for Interferon-β-mediated Induction of the β-R1(SCYB11) Gene. Journal of Biological Chemistry, 2002, 277, 38456-38461.	1.6	39
225	Role of Chemokines, Neuronal Projections, and the Blood-Brain Barrier in the Enhancement of Cerebral EAE Following Focal Brain Damage. Journal of Neuropathology and Experimental Neurology, 2000, 59, 1031-1043.	0.9	38
226	A Novel Model of Demyelinating Encephalomyelitis Induced by Monocytes and Dendritic Cells. Journal of Immunology, 2006, 177, 6871-6879.	0.4	38
227	Barrier to electrical storms. Nature, 2009, 457, 155-156.	13.7	38
228	Excessive Biologic Response to IFNβ Is Associated with Poor Treatment Response in Patients with Multiple Sclerosis. PLoS ONE, 2011, 6, e19262.	1.1	38
229	Sentries at the gate: chemokines and the blood-brain barrier. Journal of NeuroVirology, 1999, 5, 623-634.	1.0	37
230	Recovery from EAE is associated with decreased survival of encephalitogenic T cells in the CNS of B7-1/B7-2-deficient mice. European Journal of Immunology, 2003, 33, 2022-2032.	1.6	37
231	Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. Journal of Leukocyte Biology, 2005, 77, 229-237.	1.5	37
232	Roles of IKK-β, IRF1, and p65 in the Activation of Chemokine Genes by Interferon-γ. Journal of Interferon and Cytokine Research, 2009, 29, 817-824.	0.5	37
233	Priming of influenza mRNA transcription is inhibited in CHO cells treated with the methylation inhibitor, Neplanocin A. Antiviral Research, 1987, 7, 317-327.	1.9	36
234	Microglia and monocytes: 'tis plain the twain meet in the brain. Nature Neuroscience, 2011, 14, 1098-1100.	7.1	36

#	Article	IF	CITATIONS
235	TNF-α Microinjection Upregulates Chemokines and Chemokine Receptors in the Central Nervous System Without Inducing Leukocyte Infiltration. Journal of Interferon and Cytokine Research, 2003, 23, 457-466.	0.5	35
236	CCR5Δ32 polymorphism effects on CCR5 expression, patterns of immunopathology and disease course in multiple sclerosis. Journal of Neuroimmunology, 2005, 169, 137-143.	1.1	35
237	Enhanced DNA synthesis of human glial cells exposed to human leukocyte products. Journal of Neuroimmunology, 1985, 10, 151-158.	1.1	34
238	CXC Chemokine Receptors Expression during Chronic Relapsing Experimental Autoimmune Encephalomyelitis. Annals of the New York Academy of Sciences, 2000, 917, 135-144.	1.8	33
239	A novel method for subarachnoid hemorrhage to induce vasospasm in mice. Journal of Neuroscience Methods, 2009, 183, 136-140.	1.3	32
240	The role of cell type-specific responses in IFN-β therapy of multiple sclerosis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19689-19694.	3.3	32
241	Synaptic plasticity in the hippocampus shows resistance to acute ethanol exposure in transgenic mice with astrocyte-targeted enhanced CCL2 expression. Neuropharmacology, 2013, 67, 115-125.	2.0	32
242	Infiltrating macrophages are broadly activated at the early stage to support acute skeletal muscle injury repair. Journal of Neuroimmunology, 2018, 317, 55-66.	1.1	32
243	BIN1 protein isoforms are differentially expressed in astrocytes, neurons, and microglia: neuronal and astrocyte BIN1 are implicated in tau pathology. Molecular Neurodegeneration, 2020, 15, 44.	4.4	32
244	Chemokines in Neurological Trauma Models. Annals of the New York Academy of Sciences, 2002, 961, 346-349.	1.8	30
245	"Thinking without thinking―about natalizumab and PML. Journal of the Neurological Sciences, 2007, 259, 50-52.	0.3	30
246	How Many Cell Types Does It Take to Wire a Brain?. Science, 2011, 333, 1391-1392.	6.0	30
247	Characterization of natural killer cells in paired CSF and blood samples during neuroinflammation. Journal of Neuroimmunology, 2013, 254, 165-169.	1.1	30
248	Induction of β-R1/I-TAC by Interferon-β Requires Catalytically Active TYK2. Journal of Biological Chemistry, 1999, 274, 1891-1897.	1.6	29
249	Organotypic Brain Slice Culture Microglia Exhibit Molecular Similarity to Acutely-Isolated Adult Microglia and Provide a Platform to Study Neuroinflammation. Frontiers in Cellular Neuroscience, 2020, 14, 592005.	1.8	29
250	MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. Brain, 2021, 144, 2361-2374.	3.7	29
251	Surprising Pleiotropy of Nerve Growth Factor in the Treatment of Experimental Autoimmune Encephalomyelitis. Journal of Experimental Medicine, 2000, 191, 1625-1630.	4.2	27
252	CCR2 deficiency does not provide sustained improvement of muscular dystrophy in <i> mdx ^{5cv} </i> mice. FASEB Journal, 2017, 31, 35-46.	0.2	27

#	Article	IF	CITATIONS
253	A destructive feedback loop mediated by CXCL 10 in central nervous system inflammatory disease. Annals of Neurology, 2015, 78, 619-629.	2.8	26
254	Traumatic Brain Injury in hTau Model Mice: Enhanced Acute Macrophage Response and Altered Long-Term Recovery. Journal of Neurotrauma, 2018, 35, 73-84.	1.7	26
255	Analysis of leukocyte extravasation across the blood-brain barrier: Conceptual and technical aspects. Current Allergy and Asthma Reports, 2004, 4, 65-73.	2.4	25
256	Role of CCR2 in immunobiology and neurobiology. Clinical and Experimental Neuroimmunology, 2012, 3, 16-29.	0.5	25
257	A Neuroprotective Effect of the Glutamate Receptor Antagonist MK801 on Long-Term Cognitive and Behavioral Outcomes Secondary to Experimental Cerebral Malaria. Molecular Neurobiology, 2017, 54, 7063-7082.	1.9	25
258	Microglial transcriptome analysis in the rNLS8 mouse model of TDP-43 proteinopathy reveals discrete expression profiles associated with neurodegenerative progression and recovery. Acta Neuropathologica Communications, 2021, 9, 140.	2.4	25
259	Regulation of monocyte chemoattractant protein (MCP)â€1 transcription by interferonâ€gamma (IFNâ€Î³) in human astrocytoma cells: postinduction refractory state of the gene, governed by its upstream elements. FASEB Journal, 2001, 15, 383-392.	0.2	24
260	MMP9 deficiency does not decrease blood–brain barrier disruption, but increases astrocyte MMP3 expression during viral encephalomyelitis. Glia, 2011, 59, 1770-1781.	2.5	24
261	Effect of PF-00547659 on Central Nervous System Immune Surveillance and Circulating β7+ T Cells in Crohn's Disease: Report of the TOSCA Study. Journal of Crohn's and Colitis, 2018, 12, 188-196.	0.6	24
262	CCL2 transgene expression in the central nervous system directs diffuse infiltration of CD45(high)CD11b(+) monocytes and enhanced Theiler's murine encephalomyelitis virus-induced demyelinating disease. Journal of NeuroVirology, 2003, 9, 623-36.	1.0	24
263	[13] Murine experimental autoimmune encephalomyelitis: A model of immune-mediated inflammation and multiple sclerosis. Methods in Enzymology, 1997, 288, 182-190.	0.4	23
264	Illuminating neuromyelitis optica pathogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1001-1002.	3.3	23
265	A mighty mouse: building a better model of multiple sclerosis. Journal of Clinical Investigation, 2006, 116, 2313-2316.	3.9	22
266	Identification and Function of Fibrocytes in Skeletal Muscle Injury Repair and Muscular Dystrophy. Journal of Immunology, 2016, 197, 4750-4761.	0.4	22
267	Chemokines and chemokine receptors in model neurological pathologies: Molecular and immunocytochemical approaches. Methods in Enzymology, 1997, 287, 319-348.	0.4	21
268	Monocytes in active multiple sclerosis: intact regulation of HLA-DR density in vitro despite decreased HLA-DR density in vivo. Journal of Neuroimmunology, 1992, 37, 169-176.	1.1	20
269	A Role for NF-Î⁰B in the Induction of β-R1 by Interferon-β. Journal of Biological Chemistry, 2001, 276, 44365-44368.	1.6	20
270	Role of the Intracellular Domain of the Human Type I Interferon Receptor 2 Chain (IFNAR2c) in Interferon Signaling. Journal of Biological Chemistry, 2000, 275, 23981-23985.	1.6	19

#	Article	IF	CITATIONS
271	Human Parainfluenza Virus Type 3 Inhibits Gamma Interferon-Induced Major Histocompatibility Complex Class II Expression Directly and by Inducing Alpha/Beta Interferon. Journal of Virology, 2001, 75, 1124-1131.	1.5	19
272	Blocking immune cell infiltration of the central nervous system to tame Neuroinflammation in Amyotrophic lateral sclerosis. Brain, Behavior, and Immunity, 2022, 105, 1-14.	2.0	19
273	Tumor Necrosis Factor-alpha Signals to the IFN-gamma Receptor Complex to Increase Stat1alpha Activation. Journal of Interferon and Cytokine Research, 1999, 19, 731-740.	0.5	18
274	Recurrent varicella zoster virus myelopathy. Journal of the Neurological Sciences, 2009, 276, 196-198.	0.3	18
275	The immunology of multiple sclerosis. Current Opinion in Neurology, 1994, 7, 242-249.	1.8	17
276	Cell-autonomous and non-cell autonomous effects of neuronal BIN1 loss in vivo. PLoS ONE, 2019, 14, e0220125.	1.1	17
277	Immunological Concerns with Bioengineering Approaches. Annals of the New York Academy of Sciences, 2002, 961, 323-330.	1.8	16
278	Requirement of Catalytically Active Tyk2 and Accessory Signals for the Induction of TRAIL mRNA by IFN- <i>β</i> . Journal of Interferon and Cytokine Research, 2007, 27, 767-780.	0.5	16
279	A Real-Time Insight Into Disease Progression and the Role of Axonal Injury in Multiple Sclerosis. Archives of Neurology, 2001, 58, 37-9.	4.9	15
280	Chemokine Receptors as Biomarkers in Multiple Sclerosis. Disease Markers, 2006, 22, 227-233.	0.6	15
281	Assault on the guardian. Nature, 2007, 448, 421-422.	13.7	15
282	Heterogeneous, Longitudinally Stable Molecular Signatures in Response to Interferonâ€Î². Annals of the New York Academy of Sciences, 2009, 1182, 58-68.	1.8	15
283	PML risk and natalizumab: more questions than answers. Lancet Neurology, The, 2010, 9, 231-233.	4.9	14
284	CCR7 signaling in pediatric opsoclonus–myoclonus: Upregulated serum CCL21 expression is steroid-responsive. Cytokine, 2013, 64, 331-336.	1.4	14
285	Specks of insight into Alzheimer's disease. Nature, 2017, 552, 342-343.	13.7	14
286	Expression of CCR2, CCR5, and CXCR3 by CD4+ T Cells is Stable During a 2-Year Longitudinal Study but Varies Widely Between Individuals. Journal of NeuroVirology, 2003, 9, 291-299.	1.0	13
287	STAT-Phosphorylation–Independent Induction of Interferon Regulatory Factor-9 by Interferon-β. Journal of Interferon and Cytokine Research, 2010, 30, 163-170.	O.5	13
288	CCR4 Agonists CCL22 and CCL17 are Elevated in Pediatric OMS Sera: Rapid and Selective Down-Regulation of CCL22 by ACTH or Corticosteroids. Journal of Clinical Immunology, 2013, 33, 817-825.	2.0	13

#	Article	IF	CITATIONS
289	Immune-cell crosstalk in multiple sclerosis. Nature, 2018, 563, 194-195.	13.7	13
290	Organization and expression of 5S rRNA genes in the parasitic nematode,Brugia malayi. Nucleic Acids Research, 1989, 17, 3773-3782.	6.5	12
291	Clinical outcomes following surgical management of coexistent cervical stenosis and multiple sclerosis: a cohort-controlled analysis. Spine Journal, 2014, 14, 331-337.	0.6	12
292	Interferon- $\hat{1}^2$ 1a does not reduce expression of CCR5 and CXCR3 on circulating T cells. Journal of Neuroimmunology, 2003, 141, 150-154.	1.1	11
293	Snip-snip, kill-kill: truncated SDF-1 and HIV-associated neurodegeneration. Nature Neuroscience, 2003, 6, 1009-1011.	7.1	10
294	Antiinflammatory Autoimmune Cellular Responses to Cardiac Troponin I in Idiopathic Dilated Cardiomyopathy. Journal of Cardiac Failure, 2011, 17, 359-365.	0.7	9
295	Interferon-Î ³ -inducible Protein (IP)-10 mRNA Stabilized by RNA-binding Proteins in Monocytes Treated with S100b. Journal of Biological Chemistry, 2006, 281, 31212-31221.	1.6	9
296	Chemokines and chemokine receptors in inflammation of the CNS. Expert Review of Clinical Immunology, 2005, 1, 293-301.	1.3	8
297	Taking Two TRAILS. Neuron, 2005, 46, 355-356.	3.8	8
298	Surprises from the sanitary engineers. Nature, 2016, 532, 185-186.	13.7	8
299	Editors' preface: Microglia—A new era dawns. Glia, 2013, 61, 1-2.	2.5	7
300	Blood–brain barrier and neurological diseases. Clinical and Experimental Neuroimmunology, 2015, 6, 351-361.	0.5	7
301	Editorial Research Topic "Chemokines and chemokine receptors in brain homeostasis― Frontiers in Cellular Neuroscience, 2015, 9, 132.	1.8	7
302	Blood ties. Nature, 2011, 477, 41-42.	13.7	6
303	Licensed in the lungs. Nature, 2012, 488, 595-596.	13.7	6
304	Selective Leukocyte Chemoattractants Emerge from the Primeval Sup(ernatants). Journal of Immunology, 2005, 175, 5567-5568.	0.4	4
305	"Doing the locomotion―with the multistep paradigm. Blood, 2007, 109, 1342-1343.	0.6	4
306	Chemokines and chemokine receptors in the nervous system. Journal of Neuroimmunology, 2008, 198, 1-8.	1.1	4

#	Article	IF	CITATIONS
307	Fluid in the flute: Reversible hydromyelia. Journal of the Neurological Sciences, 2005, 236, 85-86.	0.3	3
308	Immunotherapy for Multiple Sclerosis. Archives of Neurology, 2009, 66, 1193-4.	4.9	3
309	Turning over the Chance card on MS susceptibility. Nature Immunology, 2010, 11, 570-572.	7.0	3
310	Good barriers make good neighbors. Science, 2014, 346, 36-37.	6.0	3
311	Neuroimmunotherapeutics Comes of Age. Neurotherapeutics, 2007, 4, 569-570.	2.1	2
312	A Fundamentally New View of Multiple Sclerosis. International Journal of MS Care, 2000, 2, 2-8.	0.4	2
313	GRP78 autoantibodies initiate the breakdown of the blood-brain barrier in neuromyelitis optica. Oncotarget, 2017, 8, 106175-106176.	0.8	2
314	Unusual Long-Standing Gd-DTPA Enhancement in a Chronic Progressive Myelopathy. Journal of Computer Assisted Tomography, 1995, 19, 649-651.	0.5	1
315	Chapter 4 Doubleâ€Label Nonradioactive In Situ Hybridization for the Analysis of Chemokine Receptor Expression in the Central Nervous System. Methods in Enzymology, 2009, 460, 91-103.	0.4	1
316	Macrophage Migration Inhibitory Factor, the Zelig of Cytokines, Is a Chaperone for SOD1 in Non-Neuronal Cells. Neuron, 2015, 86, 2-3.	3.8	1
317	Isolation of Microglia and Analysis of Protein Expression by Flow Cytometry: Avoiding the Pitfall of Microglia Background Autofluorescence. Bio-protocol, 2021, 11, e4091.	0.2	1
318	Perspective: Let the sunshine in!. Nature, 2012, 484, S8-S8.	13.7	1
319	Title is missing!. Journal of the Neurological Sciences, 2005, 235, 77.	0.3	0
320	Title is missing!. Journal of the Neurological Sciences, 2008, 264, 199.	0.3	0
321	Involvement of junctional adhesion molecules in the pathogenesis of experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2014, 275, 34.	1.1	0
322	Reply. Annals of Neurology, 2016, 80, 793-794.	2.8	0
323	To Sleep, Perchance to Survive?. Trends in Immunology, 2019, 40, 273-274.	2.9	0