Richard M Ransohoff

List of Publications by Citations

 $\textbf{Source:} \ https://exaly.com/author-pdf/7264751/richard-m-ransohoff-publications-by-citations.pdf$

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

310 papers

52,057 citations

104 h-index

225 g-index

353 ext. papers

60,866 ext. citations

11.5 avg, IF

8.1 L-index

#	Paper	IF	Citations
310	Axonal transection in the lesions of multiple sclerosis. <i>New England Journal of Medicine</i> , 1998 , 338, 278	3-859.2	3266
309	Neuroinflammation in Alzheimer's disease. <i>Lancet Neurology, The</i> , 2015 , 14, 388-405	24.1	2760
308	Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. <i>Neuron</i> , 2012 , 74, 691-705	13.9	2131
307	The many roles of chemokines and chemokine receptors in inflammation. <i>New England Journal of Medicine</i> , 2006 , 354, 610-21	59.2	1888
306	Identification of a unique TGF-Edependent molecular and functional signature in microglia. <i>Nature Neuroscience</i> , 2014 , 17, 131-43	25.5	1532
305	Microglial physiology: unique stimuli, specialized responses. <i>Annual Review of Immunology</i> , 2009 , 27, 119-45	34.7	1343
304	Development, maintenance and disruption of the blood-brain barrier. <i>Nature Medicine</i> , 2013 , 19, 1584-	96 0.5	1243
303	Immune attack: the role of inflammation in Alzheimer disease. <i>Nature Reviews Neuroscience</i> , 2015 , 16, 358-72	13.5	1216
302	Control of microglial neurotoxicity by the fractalkine receptor. <i>Nature Neuroscience</i> , 2006 , 9, 917-24	25.5	1122
301	How neuroinflammation contributes to neurodegeneration. <i>Science</i> , 2016 , 353, 777-83	33.3	955
300	A polarizing question: do M1 and M2 microglia exist?. <i>Nature Neuroscience</i> , 2016 , 19, 987-91	25.5	833
299	A role for humoral mechanisms in the pathogenesis of Devic's neuromyelitis optica. <i>Brain</i> , 2002 , 125, 1450-61	11.2	825
298	Interferons at age 50: past, current and future impact on biomedicine. <i>Nature Reviews Drug Discovery</i> , 2007 , 6, 975-90	64.1	810
297	Three or more routes for leukocyte migration into the central nervous system. <i>Nature Reviews Immunology</i> , 2003 , 3, 569-81	36.5	799
296	Expression of specific chemokines and chemokine receptors in the central nervous system of multiple sclerosis patients. <i>Journal of Clinical Investigation</i> , 1999 , 103, 807-15	15.9	777
295	Inflammatory cortical demyelination in early multiple sclerosis. <i>New England Journal of Medicine</i> , 2011 , 365, 2188-97	59.2	734
294	Single-cell transcriptomic analysis of Alzheimer's disease. <i>Nature</i> , 2019 , 570, 332-337	50.4	682

293	Innate immunity in the central nervous system. Journal of Clinical Investigation, 2012, 122, 1164-71	15.9	654
292	The anatomical and cellular basis of immune surveillance in the central nervous system. <i>Nature Reviews Immunology</i> , 2012 , 12, 623-35	36.5	638
291	The myeloid cells of the central nervous system parenchyma. <i>Nature</i> , 2010 , 468, 253-62	50.4	586
2 90	Differential roles of microglia and monocytes in the inflamed central nervous system. <i>Journal of Experimental Medicine</i> , 2014 , 211, 1533-49	16.6	550
289	An environment-dependent transcriptional network specifies human microglia identity. <i>Science</i> , 2017 , 356,	33.3	544
288	Heterogeneity of CNS myeloid cells and their roles in neurodegeneration. <i>Nature Neuroscience</i> , 2011 , 14, 1227-35	25.5	505
287	Absence of monocyte chemoattractant protein 1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. <i>Journal of Experimental Medicine</i> , 2001 , 193, 713-26	16.6	505
286	Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 14759-64	11.5	466
285	Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. <i>FASEB Journal</i> , 1993 , 7, 592-600	0.9	450
284	Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 8389-94	11.5	412
283	TREM2 deficiency eliminates TREM2+ inflammatory macrophages and ameliorates pathology in Alzheimer's disease mouse models. <i>Journal of Experimental Medicine</i> , 2015 , 212, 287-95	16.6	407
282	Regulation of tau pathology by the microglial fractalkine receptor. <i>Neuron</i> , 2010 , 68, 19-31	13.9	401
281	Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. <i>Brain</i> , 2006 , 129, 200-11	11.2	395
280	Selective chemokine receptor usage by central nervous system myeloid cells in CCR2-red fluorescent protein knock-in mice. <i>PLoS ONE</i> , 2010 , 5, e13693	3.7	387
279	Axonal pathology in multiple sclerosis: relationship to neurologic disability. <i>Current Opinion in Neurology</i> , 1999 , 12, 295-302	7.1	355
278	Efficient derivation of microglia-like cells from human pluripotent stem cells. <i>Nature Medicine</i> , 2016 , 22, 1358-1367	50.5	346
277	CX3CR1 deficiency alters microglial activation and reduces beta-amyloid deposition in two Alzheimer's disease mouse models. <i>American Journal of Pathology</i> , 2010 , 177, 2549-62	5.8	339
276	The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). <i>Seminars in Immunology</i> , 2003 , 15, 23-32	10.7	325

275	Reactive astrocyte nomenclature, definitions, and future directions. <i>Nature Neuroscience</i> , 2021 , 24, 312	2- 3 355	298
274	The chemokine receptor CXCR2 controls positioning of oligodendrocyte precursors in developing spinal cord by arresting their migration. <i>Cell</i> , 2002 , 110, 373-83	56.2	295
273	Chemokines and chemokine receptors: standing at the crossroads of immunobiology and neurobiology. <i>Immunity</i> , 2009 , 31, 711-21	32.3	279
272	Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. <i>Brain</i> , 2015 , 138, 1738-55	11.2	272
271	Interferon-induced antiviral actions and their regulation. Advances in Virus Research, 1993, 42, 57-102	10.7	270
270	A dynamic spectrum of monocytes arising from the in situ reprogramming of CCR2+ monocytes at a site of sterile injury. <i>Journal of Experimental Medicine</i> , 2015 , 212, 447-56	16.6	268
269	Peroxisome proliferator-activated receptor-gamma activators inhibit IFN-gamma-induced expression of the T cell-active CXC chemokines IP-10, Mig, and I-TAC in human endothelial cells. <i>Journal of Immunology</i> , 2000 , 164, 6503-8	5.3	267
268	The fractalkine receptor but not CCR2 is present on microglia from embryonic development throughout adulthood. <i>Journal of Immunology</i> , 2012 , 188, 29-36	5.3	256
267	Evidence for synaptic stripping by cortical microglia. <i>Glia</i> , 2007 , 55, 360-8	9	247
266	The expression and function of chemokines involved in CNS inflammation. <i>Trends in Pharmacological Sciences</i> , 2006 , 27, 48-55	13.2	240
265	Multiple sclerosis-a quiet revolution. <i>Nature Reviews Neurology</i> , 2015 , 11, 134-42	15	233
264	Concussion, microvascular injury, and early tauopathy in young athletes after impact head injury and an impact concussion mouse model. <i>Brain</i> , 2018 , 141, 422-458	11.2	231
263	Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease. <i>Journal of Neuroscience</i> , 2017 , 37, 637-647	6.6	225
262	The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. <i>FASEB Journal</i> , 2006 , 20, 896-905	0.9	225
261	Animal models of multiple sclerosis: the good, the bad and the bottom line. <i>Nature Neuroscience</i> , 2012 , 15, 1074-7	25.5	223
260	Axon loss in the spinal cord determines permanent neurological disability in an animal model of multiple sclerosis. <i>Journal of Neuropathology and Experimental Neurology</i> , 2002 , 61, 23-32	3.1	223
259	Astrocyte-restricted ablation of interleukin-17-induced Act1-mediated signaling ameliorates autoimmune encephalomyelitis. <i>Immunity</i> , 2010 , 32, 414-25	32.3	221
258	Mononuclear phagocytes migrate into the murine cochlea after acoustic trauma. <i>Journal of Comparative Neurology</i> , 2005 , 489, 180-94	3.4	220

257	Natalizumab for multiple sclerosis. New England Journal of Medicine, 2007, 356, 2622-9	59.2	215
256	Inflammatory cell trafficking across the blood-brain barrier: chemokine regulation and in vitro models. <i>Immunological Reviews</i> , 2012 , 248, 228-39	11.3	210
255	Chemokines and chemokine receptors in inflammation of the nervous system: manifold roles and exquisite regulation. <i>Immunological Reviews</i> , 2000 , 177, 52-67	11.3	210
254	CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. <i>American Journal of Pathology</i> , 2001 , 159, 1701-10	5.8	208
253	Microglial Physiology and Pathophysiology: Insights from Genome-wide Transcriptional Profiling. <i>Immunity</i> , 2016 , 44, 505-515	32.3	200
252	Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. <i>Annals of Neurology</i> , 2009 , 65, 457-69	9.4	200
251	The chemokine growth-regulated oncogene-alpha promotes spinal cord oligodendrocyte precursor proliferation. <i>Journal of Neuroscience</i> , 1998 , 18, 10457-63	6.6	197
250	P2X7-like receptor activation in astrocytes increases chemokine monocyte chemoattractant protein-1 expression via mitogen-activated protein kinase. <i>Journal of Neuroscience</i> , 2001 , 21, 7135-42	6.6	196
249	Inflammatory reaction after traumatic brain injury: therapeutic potential of targeting cell-cell communication by chemokines. <i>Trends in Pharmacological Sciences</i> , 2015 , 36, 471-80	13.2	192
248	Inflammatory cell migration into the central nervous system: a few new twists on an old tale. <i>Brain Pathology</i> , 2007 , 17, 243-50	6	190
247	Multiple sclerosis: a study of CXCL10 and CXCR3 co-localization in the inflamed central nervous system. <i>Journal of Neuroimmunology</i> , 2002 , 127, 59-68	3.5	190
246	Macrophages recruited via CCR2 produce insulin-like growth factor-1 to repair acute skeletal muscle injury. <i>FASEB Journal</i> , 2011 , 25, 358-69	0.9	188
245	Isolation of murine microglial cells for RNA analysis or flow cytometry. <i>Nature Protocols</i> , 2006 , 1, 1947-5	1 8.8	186
244	Multiple sclerosis normal-appearing white matter: pathology-imaging correlations. <i>Annals of Neurology</i> , 2011 , 70, 764-73	9.4	185
243	Microglial repopulation model reveals a robust homeostatic process for replacing CNS myeloid cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 18150-5	5 ^{11.5}	181
242	The interferons: biological effects, mechanisms of action, and use in multiple sclerosis. <i>Annals of Neurology</i> , 1995 , 37, 7-15	9.4	178
	Infiltrating monocytes promote brain inflammation and exacerbate neuronal damage after status		
241	epilepticus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E5665-74	11.5	176

239	CXCR2-positive neutrophils are essential for cuprizone-induced demyelination: relevance to multiple sclerosis. <i>Nature Neuroscience</i> , 2010 , 13, 319-26	25.5	167
238	Deficient CX3CR1 signaling promotes recovery after mouse spinal cord injury by limiting the recruitment and activation of Ly6Clo/iNOS+ macrophages. <i>Journal of Neuroscience</i> , 2011 , 31, 9910-22	6.6	166
237	Do chemokines mediate leukocyte recruitment in post-traumatic CNS inflammation?. <i>Trends in Neurosciences</i> , 1998 , 21, 154-9	13.3	164
236	Modulating CCR2 and CCL2 at the blood-brain barrier: relevance for multiple sclerosis pathogenesis. <i>Brain</i> , 2006 , 129, 212-23	11.2	163
235	Microglia in Health and Disease. <i>Cold Spring Harbor Perspectives in Biology</i> , 2015 , 8, a020560	10.2	160
234	Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury. <i>Journal of Neuroscience Research</i> , 1998 , 53, 368-76	4.4	159
233	Management of multiple sclerosis. New England Journal of Medicine, 1997, 337, 1604-11	59.2	152
232	Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. <i>Frontiers in Cellular Neuroscience</i> , 2014 , 8, 229	6.1	151
231	Acute skeletal muscle injury: CCL2 expression by both monocytes and injured muscle is required for repair. <i>FASEB Journal</i> , 2011 , 25, 3344-55	0.9	149
230	G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. <i>Blood</i> , 2011 , 117, 4349-57	2.2	148
229	Non-cell-autonomous effects of presenilin 1 variants on enrichment-mediated hippocampal progenitor cell proliferation and differentiation. <i>Neuron</i> , 2008 , 59, 568-80	13.9	147
228	Characterization of beta-R1, a gene that is selectively induced by interferon beta (IFN-beta) compared with IFN-alpha. <i>Journal of Biological Chemistry</i> , 1996 , 271, 22878-84	5.4	145
227	Microglia-mediated recovery from ALS-relevant motor neuron degeneration in a mouse model of TDP-43 proteinopathy. <i>Nature Neuroscience</i> , 2018 , 21, 329-340	25.5	142
226	The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. <i>Journal of Experimental Medicine</i> , 2004 , 199, 185-97	16.6	141
225	Mechanisms of inflammation in MS tissue: adhesion molecules and chemokines. <i>Journal of Neuroimmunology</i> , 1999 , 98, 57-68	3.5	135
224	Cancer Stem Cell-Secreted Macrophage Migration Inhibitory Factor Stimulates Myeloid Derived Suppressor Cell Function and Facilitates Glioblastoma Immune Evasion. <i>Stem Cells</i> , 2016 , 34, 2026-39	5.8	133
223	Neuroinflammation: Ways in Which the Immune System Affects the Brain. <i>Neurotherapeutics</i> , 2015 , 12, 896-909	6.4	132
222	Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells. <i>Nature Neuroscience</i> , 2013 , 16, 1401-8	25.5	131

(2005-2007)

221	Chemokines and chemokine receptors in neurological disease: raise, retain, or reduce?. <i>Neurotherapeutics</i> , 2007 , 4, 590-601	6.4	130
220	Severe disease, unaltered leukocyte migration, and reduced IFN-gamma production in CXCR3-/-mice with experimental autoimmune encephalomyelitis. <i>Journal of Immunology</i> , 2006 , 176, 4399-409	5.3	130
219	Chemokines and chemokine receptors in inflammatory demyelinating neuropathies: a central role for IP-10. <i>Brain</i> , 2002 , 125, 823-34	11.2	127
218	Chemokines and chemokine receptors: multipurpose players in neuroinflammation. <i>International Review of Neurobiology</i> , 2007 , 82, 187-204	4.4	126
217	TREM2 deficiency exacerbates tau pathology through dysregulated kinase signaling in a mouse model of tauopathy. <i>Molecular Neurodegeneration</i> , 2017 , 12, 74	19	125
216	Chemokine receptor CXCR3: an unexpected enigma. <i>Current Topics in Developmental Biology</i> , 2005 , 68, 149-81	5.3	119
215	Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. <i>Oncotarget</i> , 2015 , 6, 15077-94	3.3	117
214	Scavenging roles of chemokine receptors: chemokine receptor deficiency is associated with increased levels of ligand in circulation and tissues. <i>Blood</i> , 2008 , 112, 256-63	2.2	114
213	Chronic expression of monocyte chemoattractant protein-1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. <i>FASEB Journal</i> , 2005 , 19, 761-72	0.9	114
212	Human astrocytes proliferate in response to tumor necrosis factor alpha. <i>Journal of Neuroimmunology</i> , 1990 , 30, 239-43	3.5	114
211	The blood-brain barrier. <i>Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn</i> , 2016 , 133, 39-59	3	113
210	Overexpression of monocyte chemotactic protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse beta-amyloid deposition. <i>American Journal of Pathology</i> , 2005 , 166, 1475-85	5.8	112
209	Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. <i>Nature Neuroscience</i> , 2019 , 22, 1075-1088	25.5	109
208	Nuclear receptors license phagocytosis by trem2+ myeloid cells in mouse models of Alzheimer's disease. <i>Journal of Neuroscience</i> , 2015 , 35, 6532-43	6.6	104
207	Elevated levels of the chemokine GRO-1 correlate with elevated oligodendrocyte progenitor proliferation in the jimpy mutant. <i>Journal of Neuroscience</i> , 2000 , 20, 2609-17	6.6	104
206	Ontogeny and functions of central nervous system macrophages. <i>Journal of Immunology</i> , 2014 , 193, 26	51 <u>5</u> -321	103
205	Astrocytes as antigen-presenting cells: expression of IL-12/IL-23. <i>Journal of Neurochemistry</i> , 2005 , 95, 331-40	6	102
204	Natalizumab and PML. <i>Nature Neuroscience</i> , 2005 , 8, 1275	25.5	101

203	Microglial derived tumor necrosis factor-Edrives Alzheimer's disease-related neuronal cell cycle events. <i>Neurobiology of Disease</i> , 2014 , 62, 273-85	7.5	100
202	Lysophosphatidylcholine regulates human microvascular endothelial cell expression of chemokines. Journal of Molecular and Cellular Cardiology, 2003 , 35, 1375-84	5.8	100
201	Effects of neuromyelitis optica-IgG at the blood-brain barrier in vitro. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2017 , 4, e311	9.1	98
200	T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. <i>Nature Immunology</i> , 2016 , 17, 583-92	19.1	98
199	The Trem2 R47H variant confers loss-of-function-like phenotypes in Alzheimer's disease. <i>Molecular Neurodegeneration</i> , 2018 , 13, 29	19	95
198	Expression of chemokines RANTES, MIP-1alpha and GRO-alpha correlates with inflammation in acute experimental autoimmune encephalomyelitis. <i>NeuroImmunoModulation</i> , 1998 , 5, 166-71	2.5	95
197	Interferon-beta impairs induction of HLA-DR antigen expression in cultured adult human astrocytes. <i>Journal of Neuroimmunology</i> , 1989 , 23, 45-53	3.5	93
196	Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. <i>Journal of Neuroscience Research</i> , 2002 , 68, 691-702	4.4	92
195	TNF-alpha mediates SDF-1 alpha-induced NF-kappa B activation and cytotoxic effects in primary astrocytes. <i>Journal of Clinical Investigation</i> , 2001 , 108, 425-35	15.9	92
194	Chemokines, mononuclear cells and the nervous system: heaven (or hell) is in the details. <i>Current Opinion in Immunology</i> , 2006 , 18, 683-9	7.8	90
193	Investigating chemokines and chemokine receptors in patients with multiple sclerosis: opportunities and challenges. <i>Archives of Neurology</i> , 2001 , 58, 1975-80		86
192	Glucose-regulated protein 78 autoantibody associates with blood-brain barrier disruption in neuromyelitis optica. <i>Science Translational Medicine</i> , 2017 , 9,	17.5	81
191	Cerebrospinal fluid abnormalities in a phase III trial of Avonex (IFNbeta-1a) for relapsing multiple sclerosis. The Multiple Sclerosis Collaborative Research Group. <i>Journal of Neuroimmunology</i> , 1999 , 93, 8-14	3.5	81
190	Interferon-beta specifically inhibits interferon-gamma-induced class II major histocompatibility complex gene transcription in a human astrocytoma cell line. <i>Journal of Neuroimmunology</i> , 1991 , 33, 103-12	3.5	81
189	Imatinib attenuates skeletal muscle dystrophy in mdx mice. FASEB Journal, 2009, 23, 2539-48	0.9	80
188	Chemokines in and out of the central nervous system: much more than chemotaxis and inflammation. <i>Journal of Leukocyte Biology</i> , 2008 , 84, 587-94	6.5	79
187	Mitochondrial immobilization mediated by syntaphilin facilitates survival of demyelinated axons. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, 9953-8	11.5	78
186	CCL2 accelerates microglia-mediated Abeta oligomer formation and progression of neurocognitive dysfunction. <i>PLoS ONE</i> , 2009 , 4, e6197	3.7	78

185	Crosstalk Between Astrocytes and Microglia: An Overview. Frontiers in Immunology, 2020, 11, 1416	8.4	75	
184	CXCL12 and CXCR4 in bone marrow physiology. <i>Expert Review of Hematology</i> , 2010 , 3, 315-22	2.8	74	
183	Opposing effects of membrane-anchored CX3CL1 on amyloid and tau pathologies via the p38 MAPK pathway. <i>Journal of Neuroscience</i> , 2014 , 34, 12538-46	6.6	72	
182	Chemokine CXCL12 in neurodegenerative diseases: an SOS signal for stem cell-based repair. <i>Trends in Neurosciences</i> , 2012 , 35, 619-28	13.3	72	
181	Caveolin-3 upregulation activates beta-secretase-mediated cleavage of the amyloid precursor protein in Alzheimer's disease. <i>Journal of Neuroscience</i> , 1999 , 19, 6538-48	6.6	71	
180	Chemokines in neurological disease models: correlation between chemokine expression patterns and inflammatory pathology. <i>Journal of Leukocyte Biology</i> , 1997 , 62, 645-52	6.5	70	
179	Treatment of experimental autoimmune encephalomyelitis with the chemokine receptor antagonist Met-RANTES. <i>Journal of Neuroimmunology</i> , 2002 , 128, 16-22	3.5	70	
178	Alterations in the oligodendrocyte lineage, myelin, and white matter in adult mice lacking the chemokine receptor CXCR2. <i>Glia</i> , 2006 , 54, 471-83	9	69	
177	VCAM-1-positive microglia target oligodendrocytes at the border of multiple sclerosis lesions. Journal of Neuropathology and Experimental Neurology, 2002 , 61, 539-46	3.1	68	
176	Cellular responses to interferons and other cytokines: the JAK-STAT paradigm. <i>New England Journal of Medicine</i> , 1998 , 338, 616-8	59.2	68	
175	Myelin repair is accelerated by inactivating CXCR2 on nonhematopoietic cells. <i>Journal of Neuroscience</i> , 2010 , 30, 9074-83	6.6	67	
174	Chemokine expression in GKO mice (lacking interferon-gamma) with experimental autoimmune encephalomyelitis. <i>Journal of NeuroVirology</i> , 1999 , 5, 95-101	3.9	67	
173	Rapid remodeling of tight junctions during paracellular diapedesis in a human model of the blood-brain barrier. <i>Journal of Immunology</i> , 2014 , 193, 2427-37	5.3	66	
172	CXCR3 marks CD4+ memory T lymphocytes that are competent to migrate across a human brain microvascular endothelial cell layer. <i>Journal of Neuroimmunology</i> , 2004 , 153, 150-7	3.5	66	
171	Cutting edge: the silent chemokine receptor D6 is required for generating T cell responses that mediate experimental autoimmune encephalomyelitis. <i>Journal of Immunology</i> , 2006 , 177, 17-21	5.3	65	
170	Regulation of human IP-10 gene expression in astrocytoma cells by inflammatory cytokines. <i>Journal of Neuroscience Research</i> , 1998 , 54, 169-80	4.4	64	
169	Two-photon laser scanning microscopy imaging of intact spinal cord and cerebral cortex reveals requirement for CXCR6 and neuroinflammation in immune cell infiltration of cortical injury sites. <i>Journal of Immunological Methods</i> , 2010 , 352, 89-100	2.5	63	
168	Chemokine receptor CXCR2: physiology regulator and neuroinflammation controller?. <i>Journal of Neuroimmunology</i> , 2012 , 246, 1-9	3.5	62	

167	Sequential expression of chemokines in experimental autoimmune neuritis. <i>Journal of Neuroimmunology</i> , 2000 , 110, 121-9	3.5	62
166	Expression of fractalkine receptor CX3CR1 on cochlear macrophages influences survival of hair cells following ototoxic injury. <i>JARO - Journal of the Association for Research in Otolaryngology</i> , 2010 , 11, 223-34	3.3	61
165	Interleukin-6 protects anterior horn neurons from lethal virus-induced injury. <i>Journal of Neuroscience</i> , 2003 , 23, 481-92	6.6	61
164	Do chemokines mediate inflammatory cell invasion of the central nervous system parenchyma?. <i>Brain Pathology</i> , 1994 , 4, 135-43	6	61
163	Imaging correlates of leukocyte accumulation and CXCR4/CXCL12 in multiple sclerosis. <i>Archives of Neurology</i> , 2009 , 66, 44-53		60
162	BIN1 favors the spreading of Tau via extracellular vesicles. <i>Scientific Reports</i> , 2019 , 9, 9477	4.9	59
161	The roles of chemokine CXCL12 in embryonic and brain tumor angiogenesis. <i>Seminars in Cancer Biology</i> , 2009 , 19, 111-5	12.7	59
160	Should We Stop Saying 'Glia' and 'Neuroinflammation'?. <i>Trends in Molecular Medicine</i> , 2017 , 23, 486-500	11.5	58
159	Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. <i>Journal of Immunology</i> , 2013 , 191, 1063-72	5.3	58
158	Re-establishing immunological self-tolerance in autoimmune disease. <i>Nature Medicine</i> , 2012 , 18, 54-8	50.5	58
157	D6 facilitates cellular migration and fluid flow to lymph nodes by suppressing lymphatic congestion. <i>Blood</i> , 2011 , 118, 6220-9	2.2	58
156	Haploinsufficiency of utrophin gene worsens skeletal muscle inflammation and fibrosis in mdx mice. <i>Journal of the Neurological Sciences</i> , 2008 , 264, 106-11	3.2	58
155	Enhanced axonal growth into a spinal cord contusion injury site in a strain of mouse (129X1/SvJ) with a diminished inflammatory response. <i>Journal of Comparative Neurology</i> , 2004 , 474, 469-86	3.4	58
154	Catalytically active TYK2 is essential for interferon-beta-mediated phosphorylation of STAT3 and interferon-alpha receptor-1 (IFNAR-1) but not for activation of phosphoinositol 3-kinase. <i>Journal of Biological Chemistry</i> , 1999 , 274, 32507-11	5.4	58
153	Systemic lipopolysaccharide induces cochlear inflammation and exacerbates the synergistic ototoxicity of kanamycin and furosemide. <i>JARO - Journal of the Association for Research in Otolaryngology</i> , 2014 , 15, 555-70	3.3	57
152	Major differences in the responses of primary human leukocyte subsets to IFN-beta. <i>Journal of Immunology</i> , 2010 , 185, 5888-99	5.3	57
151	Bone marrow transplantation confers modest benefits in mouse models of Huntington's disease. Journal of Neuroscience, 2012 , 32, 133-42	6.6	57
150	Expression of chemokine receptors CCR1 and CCR5 reflects differential activation of mononuclear phagocytes in pattern II and pattern III multiple sclerosis lesions. <i>Journal of Neuropathology and Experimental Neurology</i> 2004 , 63, 262-73	3.1	57

(2009-2010)

149	Monocytes regulate T cell migration through the glia limitans during acute viral encephalitis. Journal of Virology, 2010 , 84, 4878-88	6.6	56
148	Depletion of Ly6G/C(+) cells ameliorates delayed cerebral vasospasm in subarachnoid hemorrhage. <i>Journal of Neuroimmunology</i> , 2011 , 232, 94-100	3.5	55
147	Steroid-responsive encephalopathy associated with autoimmune thyroiditis and primary CNS demyelination. <i>Journal of the Neurological Sciences</i> , 2005 , 228, 3-5	3.2	55
146	CC chemokine receptor 8 in the central nervous system is associated with phagocytic macrophages. <i>American Journal of Pathology</i> , 2003 , 162, 427-38	5.8	55
145	Determinants of CCL5-driven mononuclear cell migration across the blood-brain barrier. Implications for therapeutically modulating neuroinflammation. <i>Journal of Neuroimmunology</i> , 2006 , 179, 132-44	3.5	54
144	Pertussis toxin-induced reversible encephalopathy dependent on monocyte chemoattractant protein-1 overexpression in mice. <i>Journal of Neuroscience</i> , 2002 , 22, 10633-42	6.6	54
143	Monocyte chemoattractant protein (MCP)-1 is rapidly expressed by sympathetic ganglion neurons following axonal injury. <i>NeuroReport</i> , 2001 , 12, 601-6	1.7	54
142	Inhibitor of kappaB kinase is required to activate a subset of interferon gamma-stimulated genes. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 7994-8	11.5	53
141	AAV1/2-mediated CNS gene delivery of dominant-negative CCL2 mutant suppresses gliosis, beta-amyloidosis, and learning impairment of APP/PS1 mice. <i>Molecular Therapy</i> , 2009 , 17, 803-9	11.7	52
140	Sphingosine 1 Phosphate at the Blood Brain Barrier: Can the Modulation of S1P Receptor 1 Influence the Response of Endothelial Cells and Astrocytes to Inflammatory Stimuli?. <i>PLoS ONE</i> , 2015 , 10, e0133392	3.7	52
139	TNF-alpha down-regulates CXCR4 expression in primary murine astrocytes. <i>Brain Research</i> , 2001 , 888, 1-10	3.7	51
138	MyD88-dependent interplay between myeloid and endothelial cells in the initiation and progression of obesity-associated inflammatory diseases. <i>Journal of Experimental Medicine</i> , 2014 , 211, 887-907	16.6	50
137	An in vitro blood-brain barrier model combining shear stress and endothelial cell/astrocyte co-culture. <i>Journal of Neuroscience Methods</i> , 2014 , 232, 165-72	3	49
136	alpha4 Integrin/FN-CS1 mediated leukocyte adhesion to brain microvascular endothelial cells under flow conditions. <i>Journal of Neuroimmunology</i> , 2009 , 210, 92-9	3.5	49
135	Alternative and accessory pathways in the regulation of IFN-beta-mediated gene expression. Journal of Interferon and Cytokine Research, 2005 , 25, 788-98	3.5	49
134	IL-17-induced Act1-mediated signaling is critical for cuprizone-induced demyelination. <i>Journal of Neuroscience</i> , 2012 , 32, 8284-92	6.6	48
133	Impaired respiratory function in mdx and mdx/utrn(+/-) mice. Muscle and Nerve, 2011, 43, 263-7	3.4	48
132	A protective role for ELR+ chemokines during acute viral encephalomyelitis. <i>PLoS Pathogens</i> , 2009 , 5, e1000648	7.6	48

131	Repopulation of cochlear macrophages in murine hematopoietic progenitor cell chimeras: the role of CX3CR1. <i>Journal of Comparative Neurology</i> , 2008 , 506, 930-42	3.4	48
130	A whole-genome sequence study identifies genetic risk factors for neuromyelitis optica. <i>Nature Communications</i> , 2018 , 9, 1929	17.4	48
129	CXCL12-induced monocyte-endothelial interactions promote lymphocyte transmigration across an in vitro blood-brain barrier. <i>Science Translational Medicine</i> , 2012 , 4, 119ra14	17.5	47
128	Analyses of phenotypic and functional characteristics of CX3CR1-expressing natural killer cells. <i>Immunology</i> , 2011 , 133, 62-73	7.8	46
127	CXCR3-dependent plasma blast migration to the central nervous system during viral encephalomyelitis. <i>Journal of Virology</i> , 2011 , 85, 6136-47	6.6	46
126	CCL2 recruitment of IL-6-producing CD11b+ monocytes to the draining lymph nodes during the initiation of Th17-dependent B cell-mediated autoimmunity. <i>European Journal of Immunology</i> , 2008 , 38, 1877-88	6.1	46
125	Transforming growth factor-beta 1 differentially regulates proliferation and MHC class-II antigen expression in forebrain and brainstem astrocyte primary cultures. <i>Brain Research</i> , 1992 , 585, 229-36	3.7	45
124	Treatment with BBB022A or rolipram stabilizes the blood-brain barrier in experimental autoimmune encephalomyelitis: an additional mechanism for the therapeutic effect of type IV phosphodiesterase inhibitors. <i>Journal of Neuroimmunology</i> , 1999 , 97, 119-28	3.5	44
123	IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. <i>Nature Communications</i> , 2017 , 8, 15508	17.4	43
122	CX3CR1 deficiency delays acute skeletal muscle injury repair by impairing macrophage functions. <i>FASEB Journal</i> , 2016 , 30, 380-93	0.9	43
121	CXCR2 signaling protects oligodendrocytes and restricts demyelination in a mouse model of viral-induced demyelination. <i>PLoS ONE</i> , 2010 , 5, e11340	3.7	43
120	The Epstein-Barr virus oncoprotein latent membrane protein 1 induces expression of the chemokine IP-10: importance of mRNA half-life regulation. <i>International Journal of Cancer</i> , 2005 , 114, 598-605	7.5	43
119	CCR5 expression on monocytes and T cells: modulation by transmigration across the blood-brain barrier in vitro. <i>Cellular Immunology</i> , 2006 , 243, 19-29	4.4	42
118	Astrocyte differentiation selectively upregulates CCL2/monocyte chemoattractant protein-1 in cultured human brain-derived progenitor cells. <i>Glia</i> , 2006 , 53, 81-91	9	42
117	PDGF synergistically enhances IFN-gamma-induced expression of CXCL10 in blood-derived macrophages: implications for HIV dementia. <i>Journal of Immunology</i> , 2007 , 179, 2722-30	5.3	42
116	Inflammatory progressive multifocal leukoencephalopathy in human immunodeficiency virus-negative patients. <i>Annals of Neurology</i> , 2007 , 62, 34-9	9.4	41
115	TLR-stimulated IRAKM activates caspase-8 inflammasome in microglia and promotes neuroinflammation. <i>Journal of Clinical Investigation</i> , 2018 , 128, 5399-5412	15.9	41
114	Neutrophil depletion after subarachnoid hemorrhage improves memory via NMDA receptors. <i>Brain, Behavior, and Immunity,</i> 2016 , 54, 233-242	16.6	39

(2000-2006)

113	CC chemokine receptor 2 is protective against noise-induced hair cell death: studies in CX3CR1(+/GFP) mice. <i>JARO - Journal of the Association for Research in Otolaryngology</i> , 2006 , 7, 361-72	3.3	39
112	MCP-1 and CCR2 contribute to non-lymphocyte-mediated brain disease induced by Fr98 polytropic retrovirus infection in mice: role for astrocytes in retroviral neuropathogenesis. <i>Journal of Virology</i> , 2004 , 78, 6449-58	6.6	39
111	Etiology and pathogenesis of multiple sclerosis. Seminars in Neurology, 1998, 18, 287-94	3.2	39
110	Memory CD4+ T-cell-mediated protection from lethal coronavirus encephalomyelitis. <i>Journal of Virology</i> , 2008 , 82, 12432-40	6.6	38
109	Matrix metalloprotease-9 release from monocytes increases as a function of differentiation: implications for neuroinflammation and neurodegeneration. <i>Journal of Neuroimmunology</i> , 2000 , 109, 221-7	3.5	38
108	Leukemia inhibitory factor deficiency modulates the immune response and limits autoimmune demyelination: a new role for neurotrophic cytokines in neuroinflammation. <i>Journal of Immunology</i> , 2008 , 180, 2204-13	5.3	37
107	Experimental autoimmune encephalomyelitis: CC chemokine receptor expression by trafficking cells. <i>Journal of Autoimmunity</i> , 2002 , 19, 175-81	15.5	37
106	Constitutive expression of growth-related oncogene and its receptor in oligodendrogliomas. <i>Neurosurgery</i> , 2001 , 48, 864-73; discussion 873-4	3.2	37
105	CXCR2 signaling protects oligodendrocyte progenitor cells from IFN-I/CXCL10-mediated apoptosis. <i>Glia</i> , 2011 , 59, 1518-28	9	36
104	A novel model of demyelinating encephalomyelitis induced by monocytes and dendritic cells. <i>Journal of Immunology</i> , 2006 , 177, 6871-9	5.3	36
103	Novel interferon-beta-induced gene expression in peripheral blood cells. <i>Journal of Leukocyte Biology</i> , 2007 , 82, 1353-60	6.5	36
102	Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. <i>Journal of Leukocyte Biology</i> , 2005 , 77, 229-37	6.5	36
101	Natural killer cells modulate motor neuron-immune cell cross talk in models of Amyotrophic Lateral Sclerosis. <i>Nature Communications</i> , 2020 , 11, 1773	17.4	36
100	Key role of CXCL13/CXCR5 axis for cerebrospinal fluid B cell recruitment in pediatric OMS. <i>Journal of Neuroimmunology</i> , 2012 , 243, 81-8	3.5	35
99	Chemokine receptor CXCR4 signaling modulates the growth factor-induced cell cycle of self-renewing and multipotent neural progenitor cells. <i>Glia</i> , 2011 , 59, 108-18	9	35
98	Immunological and clinical consequences of treating a patient with natalizumab. <i>Multiple Sclerosis Journal</i> , 2012 , 18, 335-44	5	35
97	Comparison of ventricular and lumbar cerebrospinal fluid T cells in non-inflammatory neurological disorder (NIND) patients. <i>Journal of Neuroimmunology</i> , 2005 , 163, 179-84	3.5	35
96	Chemokine receptor antagonism as a new therapy for multiple sclerosis. <i>Expert Opinion on Investigational Drugs</i> , 2000 , 9, 1079-97	5.9	35

95	Excessive biologic response to IFNIs associated with poor treatment response in patients with multiple sclerosis. <i>PLoS ONE</i> , 2011 , 6, e19262	3.7	34
94	CCR5Delta32 polymorphism effects on CCR5 expression, patterns of immunopathology and disease course in multiple sclerosis. <i>Journal of Neuroimmunology</i> , 2005 , 169, 137-43	3.5	34
93	Interferon signaling is dependent on specific tyrosines located within the intracellular domain of IFNAR2c. Expression of IFNAR2c tyrosine mutants in U5A cells. <i>Journal of Biological Chemistry</i> , 2002 , 277, 1493-9	5.4	34
92	Requirement of phosphoinositide 3-kinase and Akt for interferon-beta-mediated induction of the beta-R1 (SCYB11) gene. <i>Journal of Biological Chemistry</i> , 2002 , 277, 38456-61	5.4	34
91	Priming of influenza mRNA transcription is inhibited in CHO cells treated with the methylation inhibitor, neplanocin A. <i>Antiviral Research</i> , 1987 , 7, 317-27	10.8	34
90	All (animal) models (of neurodegeneration) are wrong. Are they also useful?. <i>Journal of Experimental Medicine</i> , 2018 , 215, 2955-2958	16.6	33
89	Roles of IKK-beta, IRF1, and p65 in the activation of chemokine genes by interferon-gamma. <i>Journal of Interferon and Cytokine Research</i> , 2009 , 29, 817-24	3.5	32
88	Sentries at the gate: chemokines and the blood-brain barrier. <i>Journal of NeuroVirology</i> , 1999 , 5, 623-34	3.9	32
87	Enhanced DNA synthesis of human glial cells exposed to human leukocyte products. <i>Journal of Neuroimmunology</i> , 1985 , 10, 151-8	3.5	32
86	deficient microglia exhibit a premature aging transcriptome. <i>Life Science Alliance</i> , 2019 , 2,	5.8	32
85	Recovery from EAE is associated with decreased survival of encephalitogenic T cells in the CNS of B7-1/B7-2-deficient mice. <i>European Journal of Immunology</i> , 2003 , 33, 2022-2032	6.1	31
84	Role of chemokines, neuronal projections, and the blood-brain barrier in the enhancement of cerebral EAE following focal brain damage. <i>Journal of Neuropathology and Experimental Neurology</i> , 2000 , 59, 1031-43	3.1	31
83	Synaptic plasticity in the hippocampus shows resistance to acute ethanol exposure in transgenic mice with astrocyte-targeted enhanced CCL2 expression. <i>Neuropharmacology</i> , 2013 , 67, 115-25	5.5	29
82	CXC chemokine receptors expression during chronic relapsing experimental autoimmune encephalomyelitis. <i>Annals of the New York Academy of Sciences</i> , 2000 , 917, 135-44	6.5	29
81	TNF-alpha microinjection upregulates chemokines and chemokine receptors in the central nervous system without inducing leukocyte infiltration. <i>Journal of Interferon and Cytokine Research</i> , 2003 , 23, 457-66	3.5	29
80	The role of cell type-specific responses in IFN-Itherapy of multiple sclerosis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 19689-94	11.5	28
79	Neuroscience. How many cell types does it take to wire a brain?. Science, 2011 , 333, 1391-2	33.3	28
78	"Thinking without thinking" about natalizumab and PML. <i>Journal of the Neurological Sciences</i> , 2007 , 259, 50-2	3.2	27

77	Induction of beta-R1/I-TAC by interferon-beta requires catalytically active TYK2. <i>Journal of Biological Chemistry</i> , 1999 , 274, 1891-7	5.4	27
76	Altered Neuroinflammation and Behavior after Traumatic Brain Injury in a Mouse Model of Alzheimer's Disease. <i>Journal of Neurotrauma</i> , 2016 , 33, 625-40	5.4	26
75	A novel method for subarachnoid hemorrhage to induce vasospasm in mice. <i>Journal of Neuroscience Methods</i> , 2009 , 183, 136-40	3	26
74	CX3CR1-dependent recruitment of mature NK cells into the central nervous system contributes to control autoimmune neuroinflammation. <i>European Journal of Immunology</i> , 2016 , 46, 1984-96	6.1	26
73	Chemokines in neurological trauma models. <i>Annals of the New York Academy of Sciences</i> , 2002 , 961, 346	5 -6 .5	25
72	Analysis of leukocyte extravasation across the blood-brain barrier: conceptual and technical aspects. <i>Current Allergy and Asthma Reports</i> , 2004 , 4, 65-73	5.6	24
71	Surprising pleiotropy of nerve growth factor in the treatment of experimental autoimmune encephalomyelitis. <i>Journal of Experimental Medicine</i> , 2000 , 191, 1625-30	16.6	24
70	CCL2 transgene expression in the central nervous system directs diffuse infiltration of CD45(high)CD11b(+) monocytes and enhanced Theiler's murine encephalomyelitis virus-induced demyelinating disease. <i>Journal of NeuroVirology</i> , 2003 , 9, 623-36	3.9	24
69	Characterization of natural killer cells in paired CSF and blood samples during neuroinflammation. Journal of Neuroimmunology, 2013 , 254, 165-9	3.5	23
68	Traumatic Brain Injury in hTau Model Mice: Enhanced Acute Macrophage Response and Altered Long-Term Recovery. <i>Journal of Neurotrauma</i> , 2018 , 35, 73-84	5.4	22
67	MMP9 deficiency does not decrease blood-brain barrier disruption, but increases astrocyte MMP3 expression during viral encephalomyelitis. <i>Glia</i> , 2011 , 59, 1770-81	9	22
66	Murine experimental autoimmune encephalomyelitis: a model of immune-mediated inflammation and multiple sclerosis. <i>Methods in Enzymology</i> , 1997 , 288, 182-90	1.7	22
65	Infiltrating macrophages are broadly activated at the early stage to support acute skeletal muscle injury repair. <i>Journal of Neuroimmunology</i> , 2018 , 317, 55-66	3.5	21
64	Illuminating neuromyelitis optica pathogenesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 1001-2	11.5	21
63	A mighty mouse: building a better model of multiple sclerosis. <i>Journal of Clinical Investigation</i> , 2006 , 116, 2313-6	15.9	21
62	Regulation of monocyte chemoattractant protein (MCP)-1 transcription by interferon-gamma (IFN-gamma) in human astrocytoma cells: postinduction refractory state of the gene, governed by its upstream elements. <i>FASEB Journal</i> , 2001 , 15, 383-92	0.9	21
61	Role of CCR2 in immunobiology and neurobiology. <i>Clinical and Experimental Neuroimmunology</i> , 2012 , 3, 16-29	0.4	20
60	Monocytes in active multiple sclerosis: intact regulation of HLA-DR density in vitro despite decreased HLA-DR density in vivo. <i>Journal of Neuroimmunology</i> , 1992 , 37, 169-76	3.5	20

59	Chemokines and chemokine receptors in model neurological pathologies: molecular and immunocytochemical approaches. <i>Methods in Enzymology</i> , 1997 , 287, 319-48	1.7	19
58	Human parainfluenza virus type 3 inhibits gamma interferon-induced major histocompatibility complex class II expression directly and by inducing alpha/beta interferon. <i>Journal of Virology</i> , 2001 , 75, 1124-31	6.6	19
57	A role for NF-kappa B in the induction of beta-R1 by interferon-beta. <i>Journal of Biological Chemistry</i> , 2001 , 276, 44365-8	5.4	19
56	Role of the Fractalkine Receptor in CNS Autoimmune Inflammation: New Approach Utilizing a Mouse Model Expressing the Human CX3CR1 Variant. <i>Frontiers in Cellular Neuroscience</i> , 2018 , 12, 365	6.1	19
55	A destructive feedback loop mediated by CXCL10 in central nervous system inflammatory disease. <i>Annals of Neurology</i> , 2015 , 78, 619-29	9.4	18
54	Effect of PF-00547659 on Central Nervous System Immune Surveillance and Circulating 🛭 + T Cells in Crohn's Disease: Report of the TOSCA Study. <i>Journal of Crohnks and Colitis</i> , 2018 , 12, 188-196	1.5	17
53	Role of the intracellular domain of the human type I interferon receptor 2 chain (IFNAR2c) in interferon signaling. Expression of IFNAR2c truncation mutants in U5A cells. <i>Journal of Biological Chemistry</i> , 2000 , 275, 23981-5	5.4	17
52	Requirement of catalytically active Tyk2 and accessory signals for the induction of TRAIL mRNA by IFN-beta. <i>Journal of Interferon and Cytokine Research</i> , 2007 , 27, 767-79	3.5	16
51	Tumor necrosis factor-alpha signals to the IFN-gamma receptor complex to increase Stat1alpha activation. <i>Journal of Interferon and Cytokine Research</i> , 1999 , 19, 731-40	3.5	16
50	CCR2 deficiency does not provide sustained improvement of muscular dystrophy in mdx5cv mice. <i>FASEB Journal</i> , 2017 , 31, 35-46	0.9	15
49	Recurrent varicella zoster virus myelopathy. <i>Journal of the Neurological Sciences</i> , 2009 , 276, 196-8	3.2	15
48	Differential accumulation of storage bodies with aging defines discrete subsets of microglia in the healthy brain. <i>ELife</i> , 2020 , 9,	8.9	15
47	Identification and Function of Fibrocytes in Skeletal Muscle Injury Repair and Muscular Dystrophy. <i>Journal of Immunology</i> , 2016 , 197, 4750-4761	5.3	15
46	Heterogeneous, longitudinally stable molecular signatures in response to interferon-beta. <i>Annals of the New York Academy of Sciences</i> , 2009 , 1182, 58-68	6.5	14
45	Immunological concerns with bioengineering approaches. <i>Annals of the New York Academy of Sciences</i> , 2002 , 961, 323-30	6.5	14
44	The immunology of multiple sclerosis: new intricacies and new insights. <i>Current Opinion in Neurology</i> , 1994 , 7, 242-9	7.1	14
43	A Neuroprotective Effect of the Glutamate Receptor Antagonist MK801 on Long-Term Cognitive and Behavioral Outcomes Secondary to Experimental Cerebral Malaria. <i>Molecular Neurobiology</i> , 2017 , 54, 7063-7082	6.2	13
42	PML risk and natalizumab: more questions than answers. <i>Lancet Neurology, The</i> , 2010 , 9, 231-3	24.1	13

(2016-2003)

41	Expression of CCR2, CCR5, and CXCR3 by CD4+ T cells is stable during a 2-year longitudinal study but varies widely between individuals. <i>Journal of NeuroVirology</i> , 2003 , 9, 291-9	3.9	13
40	CCR4 agonists CCL22 and CCL17 are elevated in pediatric OMS sera: rapid and selective down-regulation of CCL22 by ACTH or corticosteroids. <i>Journal of Clinical Immunology</i> , 2013 , 33, 817-25	5.7	12
39	Cell-autonomous and non-cell autonomous effects of neuronal BIN1 loss in vivo. <i>PLoS ONE</i> , 2019 , 14, e0220125	3.7	11
38	Clinical outcomes following surgical management of coexistent cervical stenosis and multiple sclerosis: a cohort-controlled analysis. <i>Spine Journal</i> , 2014 , 14, 331-7	4	11
37	Specks of insight into Alzheimer's disease. <i>Nature</i> , 2017 , 552, 342-343	50.4	11
36	CCR7 signaling in pediatric opsoclonus-myoclonus: upregulated serum CCL21 expression is steroid-responsive. <i>Cytokine</i> , 2013 , 64, 331-6	4	11
35	Chemokine receptors as biomarkers in multiple sclerosis. <i>Disease Markers</i> , 2006 , 22, 227-33	3.2	11
34	Organization and expression of 5S rRNA genes in the parasitic nematode, Brugia malayi. <i>Nucleic Acids Research</i> , 1989 , 17, 3773-82	20.1	11
33	STAT-phosphorylation-independent induction of interferon regulatory factor-9 by interferon-beta. <i>Journal of Interferon and Cytokine Research</i> , 2010 , 30, 163-70	3.5	10
32	Interferon-beta 1a does not reduce expression of CCR5 and CXCR3 on circulating T cells. <i>Journal of Neuroimmunology</i> , 2003 , 141, 150-4	3.5	10
31	Snip-snip, kill-kill: truncated SDF-1 and HIV-associated neurodegeneration. <i>Nature Neuroscience</i> , 2003 , 6, 1009-11	25.5	10
30	A real-time insight into disease progression and the role of axonal injury in multiple sclerosis. <i>Archives of Neurology</i> , 2001 , 58, 37-9		10
29	Disease Progression-Dependent Effects of TREM2 Deficiency in a Mouse Model of Alzheimer's Disease. <i>Journal of Neuroscience</i> , 2017 , 37, 637-647	6.6	10
28	BIN1 protein isoforms are differentially expressed in astrocytes, neurons, and microglia: neuronal and astrocyte BIN1 are implicated in tau pathology. <i>Molecular Neurodegeneration</i> , 2020 , 15, 44	19	9
27	Organotypic Brain Slice Culture Microglia Exhibit Molecular Similarity to Acutely-Isolated Adult Microglia and Provide a Platform to Study Neuroinflammation. <i>Frontiers in Cellular Neuroscience</i> , 2020 , 14, 592005	6.1	9
26	Taking two TRAILS. <i>Neuron</i> , 2005 , 46, 355-6	13.9	7
25	Chemokines and chemokine receptors in inflammation of the CNS. <i>Expert Review of Clinical Immunology</i> , 2005 , 1, 293-301	5.1	7
24	Neuroinflammation: Surprises from the sanitary engineers. <i>Nature</i> , 2016 , 532, 185-6	50.4	7

23	BloodBrain barrier and neurological diseases. Clinical and Experimental Neuroimmunology, 2015, 6, 351-	-3 6 .4	6
22	Antiinflammatory autoimmune cellular responses to cardiac troponin I in idiopathic dilated cardiomyopathy. <i>Journal of Cardiac Failure</i> , 2011 , 17, 359-65	3.3	6
21	Editorial Research Topic "Chemokines and chemokine receptors in brain homeostasis". <i>Frontiers in Cellular Neuroscience</i> , 2015 , 9, 132	6.1	4
20	Doing the locomotion⊡with the multistep paradigm. <i>Blood</i> , 2007 , 109, 1342-1343	2.2	4
19	Interferon-Enducible Protein (IP)-10 mRNA Stabilized by RNA-binding Proteins in Monocytes Treated with S100b. <i>Journal of Biological Chemistry</i> , 2006 , 281, 31212-31221	5.4	4
18	MOG autoantibodies trigger a tightly-controlled FcR and BTK-driven microglia proliferative response. <i>Brain</i> , 2021 , 144, 2361-2374	11.2	4
17	Physiology. Good barriers make good neighbors. <i>Science</i> , 2014 , 346, 36-7	33.3	3
16	Selective leukocyte chemoattractants emerge from the primeval sup(ernatants). <i>Journal of Immunology</i> , 2005 , 175, 5567-8	5.3	3
15	New BBB Model Reveals That IL-6 Blockade Suppressed the BBB Disorder, Preventing Onset of NMOSD. <i>Neurology: Neuroimmunology and NeuroInflammation</i> , 2021 , 8,	9.1	3
14	Immunotherapy for multiple sclerosis: the curious case of interferon beta. <i>Archives of Neurology</i> , 2009 , 66, 1193-4		2
13	Chemokines and chemokine receptors in the nervous system Rome, 27/28 October, 2007. <i>Journal of Neuroimmunology</i> , 2008 , 198, 1-8	3.5	2
12	Fluid in the flute: Reversible hydromyelia. <i>Journal of the Neurological Sciences</i> , 2005 , 236, 85-6	3.2	2
11	Double-label nonradioactive in situ hybridization for the analysis of chemokine receptor expression in the central nervous system. <i>Methods in Enzymology</i> , 2009 , 460, 91-103	1.7	1
10	Unusual long-standing Gd-DTPA enhancement in a chronic progressive myelopathy. <i>Journal of Computer Assisted Tomography</i> , 1995 , 19, 649-51	2.2	1
9	A Fundamentally New View of Multiple Sclerosis. International Journal of MS Care, 2000, 2, 2-8	2.3	1
8	BIN1 protein isoforms are differentially expressed in astrocytes, neurons, and microglia: neuronal and astrocyte BIN1 implicated in Tau pathology		1
7	Perspective: Let the sunshine in!. <i>Nature</i> , 2012 , 484, S8	50.4	1
6	Isolation of Microglia and Analysis of Protein Expression by Flow Cytometry: Avoiding the Pitfall of Microglia Background Autofluorescence. <i>Bio-protocol</i> , 2021 , 11, e4091	0.9	1

LIST OF PUBLICATIONS

5	Microglial transcriptome analysis in the rNLS8 mouse model of TDP-43 proteinopathy reveals discrete expression profiles associated with neurodegenerative progression and recovery. <i>Acta Neuropathologica Communications</i> , 2021 , 9, 140	7.3 1
4	To Sleep, Perchance to Survive?. <i>Trends in Immunology</i> , 2019 , 40, 273-274	14.4
3	Macrophage migration inhibitory factor, the Zelig of cytokines, is a chaperone for SOD1 in non-neuronal cells. <i>Neuron</i> , 2015 , 86, 2-3	13.9
2	Reply. <i>Annals of Neurology</i> , 2016 , 80, 793-794	9.4
1	. Journal of the Neurological Sciences, 2008 , 264, 199	3.2