Xiuyun Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/726474/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemically reduced graphene oxide and Nafion nanocomposite for ultralow potential detection of organophosphate pesticide. Sensors and Actuators B: Chemical, 2013, 177, 724-729.	7.8	105
2	Using silver nanocluster/graphene nanocomposite to enhance photoelectrochemical activity of CdS:Mn/TiO2 for highly sensitive signal-on immunoassay. Biosensors and Bioelectronics, 2016, 80, 614-620.	10.1	44
3	An electrochemically aminated glassy carbon electrode for simultaneous determination of hydroquinone and catechol. Analyst, The, 2016, 141, 1077-1082.	3.5	44
4	A copper-based metal–organic framework/graphene nanocomposite for the sensitive and stable electrochemical detection of DNA bases. Analyst, The, 2020, 145, 1933-1942.	3.5	34
5	Polydopamine with Tailorable Photoelectrochemical Activities for the Highly Sensitive Immunoassay of Tumor Markers. Analytical Chemistry, 2021, 93, 6763-6769.	6.5	32
6	Covalent Functionalization of Graphene Oxide with a Presynthesized Metal–Organic Framework Enables a Highly Stable Electrochemical Sensing. ACS Applied Materials & Interfaces, 2019, 11, 33238-33244.	8.0	31
7	Rational Design of Bioelectrochemically Multifunctional Film with Oxidase, Ferrocene, and Graphene Oxide for Development of in Vivo Electrochemical Biosensors. Analytical Chemistry, 2016, 88, 5885-5891.	6.5	26
8	Phosphonate-Substituted Ruthenium(II) Bipyridyl Derivative as a Photoelectrochemical Probe for Sensitive and Selective Detection of Mercury(II) in Biofluids. Analytical Chemistry, 2018, 90, 14423-14432.	6.5	24
9	Oxygen defects engineered CdS/Bi2O2.33 direct Z-Scheme heterojunction for highly sensitive photoelectrochemical assay of Hg2+. Talanta, 2020, 217, 121090.	5.5	23
10	An ATMND/SGI based label-free and fluorescence ratiometric aptasensor for rapid and highly sensitive detection of cocaine in biofluids. Talanta, 2016, 161, 437-442.	5.5	21
11	Fabrication of highly catalytic silver nanoclusters/graphene oxide nanocomposite as nanotag for sensitive electrochemical immunoassay. Analytica Chimica Acta, 2016, 906, 80-88.	5.4	21
12	Reasonable design of an MXene-based enzyme-free amperometric sensing interface for highly sensitive hydrogen peroxide detection. Analytical Methods, 2021, 13, 2512-2518.	2.7	13
13	Sensitive nitrite detection using a simple electrochemically aminated glassy carbon electrode. Analytical Methods, 2016, 8, 3445-3449.	2.7	12
14	Fluorescent trimethyl-substituted naphthyridine as a label-free signal reporter for one-step and highly sensitive fluorescent detection of DNA in serum samples. Biosensors and Bioelectronics, 2017, 87, 984-990.	10.1	11
15	New Insights of Charge Transfer at Metal/Semiconductor Interfaces for Hot-Electron Generation Studied by Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry Letters, 2022, 13, 3571-3578.	4.6	4
16	An Electrochromic Ag-Decorated WO3â^'x Film with Adjustable Defect States for Electrochemical Surface-Enhanced Raman Spectroscopy. Nanomaterials, 2022, 12, 1637.	4.1	2