Marcin Magierowski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7264679/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Role of Intestinal Alkaline Phosphatase in Inflammatory Disorders of Gastrointestinal Tract. Mediators of Inflammation, 2017, 2017, 1-9.	3.0	116
2	Gaseous Mediators Nitric Oxide and Hydrogen Sulfide in the Mechanism of Gastrointestinal Integrity, Protection and Ulcer Healing. Molecules, 2015, 20, 9099-9123.	3.8	89
3	Can exercise affect the course of inflammatory bowel disease? Experimental and clinical evidence. Pharmacological Reports, 2016, 68, 827-836.	3.3	70
4	Role of Obesity, Mesenteric Adipose Tissue, and Adipokines in Inflammatory Bowel Diseases. Biomolecules, 2019, 9, 780.	4.0	70
5	Interaction between endogenous carbon monoxide and hydrogen sulfide in the mechanism of gastroprotection against acute aspirin-induced gastric damage. Pharmacological Research, 2016, 114, 235-250.	7.1	48
6	Curcumin: A Potent Protectant against Esophageal and Gastric Disorders. International Journal of Molecular Sciences, 2019, 20, 1477.	4.1	46
7	Carbon Monoxide (CO) Released from Tricarbonyldichlororuthenium (II) Dimer (CORM-2) in Gastroprotection against Experimental Ethanol-Induced Gastric Damage. PLoS ONE, 2015, 10, e0140493.	2.5	45
8	Role of Carbon Monoxide in Host–Gut Microbiome Communication. Chemical Reviews, 2020, 120, 13273-13311.	47.7	45
9	Endogenous Prostaglandins and Afferent Sensory Nerves in Gastroprotective Effect of Hydrogen Sulfide against Stress-Induced Gastric Lesions. PLoS ONE, 2015, 10, e0118972.	2.5	45
10	Cross-talk between hydrogen sulfide and carbon monoxide in the mechanism of experimental gastric ulcers healing, regulation of gastric blood flow and accompanying inflammation. Biochemical Pharmacology, 2018, 149, 131-142.	4.4	42
11	Carbon monoxide released from its pharmacological donor, tricarbonyldichlororuthenium (II) dimer, accelerates the healing of preâ€existing gastric ulcers. British Journal of Pharmacology, 2017, 174, 3654-3668.	5.4	41
12	Moderate Exercise Training Attenuates the Severity of Experimental Rodent Colitis: The Importance of Crosstalk between Adipose Tissue and Skeletal Muscles. Mediators of Inflammation, 2015, 2015, 1-12.	3.0	40
13	Beneficial Effect of Voluntary Exercise on Experimental Colitis in Mice Fed a High-Fat Diet: The Role of Irisin, Adiponectin and Proinflammatory Biomarkers. Nutrients, 2017, 9, 410.	4.1	38
14	Oxidative gastric mucosal damage induced by ischemia/reperfusion and the mechanisms of its prevention by carbon monoxide-releasing tricarbonyldichlororuthenium (II) dimer. Free Radical Biology and Medicine, 2019, 145, 198-208.	2.9	38
15	Organic carbon monoxide prodrug, BW-CO-111, in protection against chemically-induced gastric mucosal damage. Acta Pharmaceutica Sinica B, 2021, 11, 456-475.	12.0	35
16	The Protective Role of Carbon Monoxide (CO) Produced by Heme Oxygenases and Derived from the CO-Releasing Molecule CORM-2 in the Pathogenesis of Stress-Induced Gastric Lesions: Evidence for Non-Involvement of Nitric Oxide (NO). International Journal of Molecular Sciences, 2016, 17, 442.	4.1	34
17	Hydrogen Sulfide and Carbon Monoxide Protect Gastric Mucosa Compromised by Mild Stress Against Alendronate Injury. Digestive Diseases and Sciences, 2016, 61, 3176-3189.	2.3	33
18	Mechanisms of curcumin-induced gastroprotection against ethanol-induced gastric mucosal lesions. Journal of Gastroenterology, 2018, 53, 618-630.	5.1	32

#	Article	IF	CITATIONS
19	Emerging role of carbon monoxide in regulation of cellular pathways and in the maintenance of gastric mucosal integrity. Pharmacological Research, 2018, 129, 56-64.	7.1	30
20	Exogenous and Endogenous Hydrogen Sulfide Protects Gastric Mucosa against the Formation and Time-Dependent Development of Ischemia/Reperfusion-Induced Acute Lesions Progressing into Deeper Ulcerations. Molecules, 2017, 22, 295.	3.8	28
21	The effect of hydrogen sulfide-releasing naproxen (ATB-346) versus naproxen on formation of stress-induced gastric lesions, the regulation of systemic inflammation, hypoxia and alterations in gastric microcirculation. Journal of Physiology and Pharmacology, 2017, 68, 749-756.	1.1	28
22	Time-dependent course of gastric ulcer healing and molecular markers profile modulated by increased gastric mucosal content of carbon monoxide released from its pharmacological donor. Biochemical Pharmacology, 2019, 163, 71-83.	4.4	23
23	Nitric oxide, afferent sensory nerves, and antioxidative enzymes in the mechanism of protection mediated by tricarbonyldichlororuthenium(II) dimer and sodium hydrosulfide against aspirin-induced gastric damage. Journal of Gastroenterology, 2018, 53, 52-63.	5.1	22
24	Carbon Monoxide Being Hydrogen Sulfide and Nitric Oxide Molecular Sibling, as Endogenous and Exogenous Modulator of Oxidative Stress and Antioxidative Mechanisms in the Digestive System. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-14.	4.0	21
25	Exogenous Asymmetric Dimethylarginine (ADMA) in Pathogenesis of Ischemia-Reperfusion-Induced Gastric Lesions: Interaction with Protective Nitric Oxide (NO) and Calcitonin Gene-Related Peptide (CGRP). International Journal of Molecular Sciences, 2014, 15, 4946-4964.	4.1	20
26	Alterations in Gastric Mucosal Expression of Calcitonin Gene-Related Peptides, Vanilloid Receptors, and Heme Oxygenase-1 Mediate Gastroprotective Action of Carbon Monoxide against Ethanol-Induced Gastric Mucosal Lesions. International Journal of Molecular Sciences, 2018, 19, 2960.	4.1	20
27	Synergisms, Discrepancies and Interactions between Hydrogen Sulfide and Carbon Monoxide in the Gastrointestinal and Digestive System Physiology, Pathophysiology and Pharmacology. Biomolecules, 2020, 10, 445.	4.0	20
28	The Impact of Asymmetric Dimethylarginine (ADAMA), the Endogenous Nitric Oxide (NO) Synthase Inhibitor, to the Pathogenesis of Gastric Mucosal Damage. Current Pharmaceutical Design, 2012, 19, 90-97.	1.9	20
29	Exploiting Significance of Physical Exercise in Prevention of Gastrointestinal Disorders. Current Pharmaceutical Design, 2018, 24, 1916-1925.	1.9	18
30	Melatonin in Prevention of the Sequence from Reflux Esophagitis to Barrett's Esophagus and Esophageal Adenocarcinoma: Experimental and Clinical Perspectives. International Journal of Molecular Sciences, 2018, 19, 2033.	4.1	18
31	Effect of Forced Physical Activity on the Severity of Experimental Colitis in Normal Weight and Obese Mice. Involvement of Oxidative Stress and Proinflammatory Biomarkers. Nutrients, 2019, 11, 1127.	4.1	18
32	Evidence for Cytoprotective Effect of Carbon Monoxide Donor in the Development of Acute Esophagitis Leading to Acute Esophageal Epithelium Lesions. Cells, 2020, 9, 1203.	4.1	17
33	Gaseous Mediators as a Key Molecular Targets for the Development of Gastrointestinal-Safe Anti-Inflammatory Pharmacology. Frontiers in Pharmacology, 2021, 12, 657457.	3.5	16
34	Mitochondria-targeted hydrogen sulfide donors versus acute oxidative gastric mucosal injury. Journal of Controlled Release, 2022, 348, 321-334.	9.9	14
35	Hydrogen Sulphide Production in Healthy and Ulcerated Gastric Mucosa of Rats. Molecules, 2017, 22, 530.	3.8	13
36	Carbon monoxide (CO)/heme oxygenase (HO)-1 in gastrointestinal tumors pathophysiology and pharmacology - possible anti- and pro-cancer activities. Biochemical Pharmacology, 2022, 201, 115058.	4.4	10

#	Article	IF	CITATIONS
37	Intestinal Alkaline Phosphatase Combined with Voluntary Physical Activity Alleviates Experimental Colitis in Obese Mice. Involvement of Oxidative Stress, Myokines, Adipokines and Proinflammatory Biomarkers. Antioxidants, 2021, 10, 240.	5.1	8
38	Microbiome Profile and Molecular Pathways Alterations in Gastrointestinal Tract by Hydrogen Sulfide-Releasing Nonsteroidal Anti-Inflammatory Drug (ATB-352): Insight into Possible Safer Polypharmacy. Antioxidants and Redox Signaling, 2022, 36, 189-210.	5.4	8
39	Novel Hydrogen Sulfide (H2S)-Releasing BW-HS-101 and Its Non-H2S Releasing Derivative in Modulation of Microscopic and Molecular Parameters of Gastric Mucosal Barrier. International Journal of Molecular Sciences, 2021, 22, 5211.	4.1	8
40	Alternative Therapy in the Prevention of Experimental and Clinical Inflammatory Bowel Disease. Impact of Regular Physical Activity, Intestinal Alkaline Phosphatase and Herbal Products. Current Pharmaceutical Design, 2020, 26, 2936-2950.	1.9	7
41	The Combination of Intestinal Alkaline Phosphatase Treatment with Moderate Physical Activity Alleviates the Severity of Experimental Colitis in Obese Mice via Modulation of Gut Microbiota, Attenuation of Proinflammatory Cytokines, Oxidative Stress Biomarkers and DNA Oxidative Damage in Colonic Mucosa. International Journal of Molecular Sciences, 2022, 23, 2964.	4.1	7
42	Molecular Profile of Barrett's Esophagus and Gastroesophageal Reflux Disease in the Development of Translational Physiological and Pharmacological Studies. International Journal of Molecular Sciences, 2020, 21, 6436.	4.1	6
43	HOXA13 in etiology and oncogenic potential of Barrett's esophagus. Nature Communications, 2021, 12, 3354.	12.8	5
44	Activation of transient receptor potential vanilloid channel 4 contributes to the development of ethanol-induced gastric injury in mice. European Journal of Pharmacology, 2021, 902, 174113.	3.5	4
45	Impact of Vagotomy on Postoperative Weight Loss, Alimentary Intake, and Enterohormone Secretion After Bariatric Surgery in Experimental Translational Models. Obesity Surgery, 2022, 32, 1586-1600.	2.1	4
46	Role of Obesity, Physical Exercise, Adipose Tissue-Skeletal Muscle Crosstalk and Molecular Advances in Barrett's Esophagus and Esophageal Adenocarcinoma. International Journal of Molecular Sciences, 2022, 23, 3942.	4.1	4
47	Interaction of epidermal growth factor with COX-2 products and peroxisome proliferator-activated receptor-γ system in experimental rat Barrett's esophagus. American Journal of Physiology - Renal Physiology, 2020, 318, G375-G389.	3.4	3
48	Impact of Intragastric Balloon Placement on the Stomach Wall: A Prospective Cohort Study. Obesity Surgery, 2022, 32, 2426-2432.	2.1	3
49	Barrett's Metaplasia Progression towards Esophageal Adenocarcinoma: An Attempt to Select a Panel of Molecular Sensors and to Reflect Clinical Alterations by Experimental Models. International Journal of Molecular Sciences, 2022, 23, 3312.	4.1	0