
Azfar Hassan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7264538/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced Settling and Dewatering of Oil Sands Mature Fine Tailings with Titanomagnetite Nanoparticles Grafted with Polyacrylamide and Lauryl Sulfate. ACS Applied Nano Materials, 2022, 5, 7679-7695.	2.4	9
2	O-exchange evidenced in Ce-Ni-MFI catalysts during water gas shift reaction: Use of isotopic water (50% H218O - 50% H216O). Applied Catalysis B: Environmental, 2020, 263, 118365.	10.8	0
3	Kinetic study of the thermo-oxidative decomposition of metformin by isoconversional and theoretical methods. Thermochimica Acta, 2020, 694, 178797.	1.2	8
4	Metformin Removal from Water Using Fixed-bed Column of Silica-Alumina Composite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 597, 124814.	2.3	16
5	A review on the application of differential scanning calorimetry (DSC) to petroleum products. Journal of Thermal Analysis and Calorimetry, 2019, 138, 3485-3510.	2.0	20
6	Enhancement of petroleum coke thermal reactivity using Oxy racking technique. Canadian Journal of Chemical Engineering, 2019, 97, 2794-2803.	0.9	11
7	Silica-alumina composite as an effective adsorbent for the removal of metformin from water. Journal of Environmental Chemical Engineering, 2019, 7, 102994.	3.3	51
8	Experimental and theoretical studies on the thermal decomposition of metformin. Journal of Thermal Analysis and Calorimetry, 2019, 138, 433-441.	2.0	19
9	Synergetic effects of cerium and nickel in Ce-Ni-MFI catalysts on low-temperature water-gas shift reaction. Fuel, 2019, 237, 361-372.	3.4	21
10	Development and characterization of novel combinations of Ceâ€Niâ€MFI solids for water gas shift reaction. Canadian Journal of Chemical Engineering, 2019, 97, 140-151.	0.9	11
11	New Insights into the Kinetics of Structural Transformation and Hydrogenation Activity of Nano-crystalline Molybdenum Carbide. Catalysis Letters, 2018, 148, 904-923.	1.4	13
12	Mechanism of Hierarchical Porosity Development in Hexagonal Boron Nitride Nanocrystalline Microstructures for Biomedical and Industrial Applications. ACS Applied Nano Materials, 2018, 1, 4491-4501.	2.4	9
13	Nanosize effects of NiO nanosorbcats on adsorption and catalytic thermoâ€oxidative decomposition of vacuum residue asphaltenes. Canadian Journal of Chemical Engineering, 2017, 95, 1864-1874.	0.9	25
14	Catalytic Steam Gasification of Athabasca Visbroken Residue by NiO–Kaolin-Based Catalysts in a Fixed-Bed Reactor. Energy & Fuels, 2017, 31, 7396-7404.	2.5	4
15	Thermochemical CO ₂ splitting using double perovskite-type Ba ₂ Ca _{0.66} Nb _{1.34â^x} Fe _x O _{6â^î^} . Journal of Materials Chemistry A, 2017, 5, 6874-6883.	5.2	23
16	Effects of the size of NiO nanoparticles on the catalytic oxidation of Quinolin-65 as an asphaltene model compound. Fuel, 2017, 207, 423-437.	3.4	27
17	Theoretical and thermogravimetric study on the thermo-oxidative decomposition of Quinolin-65 as an asphaltene model molecule. RSC Advances, 2016, 6, 54418-54430.	1.7	20
18	Profound Understanding of Effect of Transition Metal Dopant, Sintering Temperature, and <i>p</i> O ₂ on the Electrical and Optical Properties of Proton Conducting BaCe _{0.9} Sm _{0.1} O _{3â^î^} . Inorganic Chemistry, 2016, 55, 729-744.	1.9	16

Azfar Hassan

#	Article	IF	CITATIONS
19	Maghemite nanosorbcats for methylene blue adsorption and subsequent catalytic thermo-oxidative decomposition: Computational modeling and thermodynamics studies. Journal of Colloid and Interface Science, 2016, 461, 396-408.	5.0	52
20	Effect of oxide support on Ni–Pd bimetallic nanocatalysts for steam gasification of n-C 7 asphaltenes. Fuel, 2015, 156, 110-120.	3.4	57
21	Catalytic steam gasification of n-C5 asphaltenes by kaolin-based catalysts in a fixed-bed reactor. Applied Catalysis A: General, 2015, 507, 149-161.	2.2	12
22	Comparing kinetics and mechanism of adsorption and thermo-oxidative decomposition of Athabasca asphaltenes onto TiO2, ZrO2, and CeO2 nanoparticles. Applied Catalysis A: General, 2014, 484, 161-171.	2.2	84
23	Comparative study on thermal cracking of Athabasca bitumen. Journal of Thermal Analysis and Calorimetry, 2013, 114, 465-472.	2.0	27
24	Detecting CO2 at ppm level in synthetic air using mixed conducting double perovskite-type metal oxides. Sensors and Actuators B: Chemical, 2013, 178, 598-605.	4.0	14
25	Development of a support for a NiO catalyst for selective adsorption and post-adsorption catalytic steam gasification of thermally converted asphaltenes. Catalysis Today, 2013, 207, 112-118.	2.2	33
26	Kinetics of the catalytic thermo-oxidation of asphaltenes at isothermal conditions on different metal oxide nanoparticle surfaces. Catalysis Today, 2013, 207, 127-132.	2.2	69
27	Thermogravimetric studies on catalytic effect of metal oxide nanoparticles on asphaltene pyrolysis under inert conditions. Journal of Thermal Analysis and Calorimetry, 2012, 110, 1327-1332.	2.0	67
28	Iron oxide nanoparticles for rapid adsorption and enhanced catalytic oxidation of thermally cracked asphaltenes. Fuel, 2012, 95, 257-262.	3.4	139
29	Adsorption of Athabasca Vacuum Residues and Their Visbroken Products over Macroporous Solids: Influence of Their Molecular Characteristics. Energy & Fuels, 2011, 25, 4049-4054.	2.5	24
30	Effect of the Particle Size on Asphaltene Adsorption and Catalytic Oxidation onto Alumina Particles. Energy & Fuels, 2011, 25, 3961-3965.	2.5	94
31	Application of Nanotechnology for Heavy Oil Upgrading: Catalytic Steam Gasification/Cracking of Asphaltenes. Energy & Fuels, 2011, 25, 1566-1570.	2.5	180
32	Metal Oxide Nanoparticles for Asphaltene Adsorption and Oxidation. Energy & Fuels, 2011, 25, 1017-1023.	2.5	255
33	Effect of surface acidity and basicity of aluminas on asphaltene adsorption and oxidation. Journal of Colloid and Interface Science, 2011, 360, 233-238.	5.0	126
34	Oxidation of Oils and Bitumen at Various O ₂ Concentrations. Energy & Fuels, 2010, 24, 5378-5386.	2.5	5
35	Development of an alternative setup for the estimation of microcarbon residue for heavy oil and fractions: Effects derived from air presence. Fuel, 2008, 87, 3631-3639.	3.4	30
36	Effect of O ₂ on Microcarbon Residue Standards Analysis. Energy & Fuels, 2008, 22, 4062-4069.	2.5	8

Azfar Hassan

#	Article	IF	CITATIONS
37	Highly active, selective and stable Mo/Ru-HZSM-5 catalysts for oxygen-free methane aromatization. Applied Catalysis A: General, 2006, 297, 159-164.	2.2	32
38	A comparison between β- and USY-zeolite-based hydrocracking catalysts. Applied Catalysis A: General, 2001, 220, 59-68.	2.2	40
39	Regiochemistry and mechanism of oxidation ofN-benzyl-N-alkylhydroxylamines to nitrones. Journal of Physical Organic Chemistry, 2000, 13, 443-451.	0.9	14