Vincent Sol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7264422/publications.pdf

Version: 2024-02-01

104 2,943 30 48 papers citations h-index g-index

107 107 107 107 4072

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: New anticancer drug delivery systems. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 941-945.	1.0	172
2	Antimicrobial silver nanoparticles generated on cellulose nanocrystals. Journal of Nanoparticle Research, 2011, 13, 1557-1562.	0.8	158
3	Triazinyl Porphyrin-Based Photoactive Cotton Fabrics: Preparation, Characterization, and Antibacterial Activity. Biomacromolecules, 2011, 12, 1716-1723.	2.6	111
4	Photo-Uncaging of a Microtubule-Targeted Rigidin Analogue in Hypoxic Cancer Cells and in a Xenograft Mouse Model. Journal of the American Chemical Society, 2019, 141, 18444-18454.	6.6	84
5	Porphyrin-grafted cellulose fabric: New photobactericidal material obtained by "Click-Chemistry― reaction. Materials Letters, 2009, 63, 1889-1891.	1.3	81
6	Polyamine conjugates of meso-tritolylporphyrin and protoporphyrin IX: Potential agents for photodynamic therapy of cancers. Bioorganic and Medicinal Chemistry, 2006, 14, 1364-1377.	1.4	69
7	Enhanced Photobactericidal and Targeting Properties of a Cationic Porphyrin following the Attachment of Polymyxin B. Bioconjugate Chemistry, 2017, 28, 2493-2506.	1.8	67
8	Synthesis, Spectroscopy, and Photocytotoxicity of Glycosylated Amino Acid Porphyrin Derivatives as Promising Molecules for Cancer Phototherapy. Journal of Organic Chemistry, 1999, 64, 4431-4444.	1.7	65
9	Chlorin-PEI-labeled cellulose nanocrystals: Synthesis, characterization and potential application in PDT. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 3648-3652.	1.0	62
10	Synthesis of tetraglucosyl- and tetrapolyamine–tetrabenzoporphyrin conjugates for an application in PDT. Bioorganic and Medicinal Chemistry, 2009, 17, 7647-7657.	1.4	60
11	UV and visible light screening by individual sporopollenin exines derived from Lycopodium clavatum (club moss) and Ambrosia trifida (giant ragweed). Journal of Photochemistry and Photobiology B: Biology, 2011, 102, 209-217.	1.7	58
12	PEI-cellulose nanocrystal hybrids as efficient siRNA delivery agentsâ€"Synthesis, physicochemical characterization and in vitro evaluation. Carbohydrate Polymers, 2017, 164, 258-267.	5.1	58
13	Synthesis and photobiocidal properties of cationic porphyrin-grafted paper. Carbohydrate Polymers, 2013, 91, 333-338.	5.1	57
14	Curcumin-loaded polysaccharides-based complex particles obtained by polyelectrolyte complexation and ionic gelation. I-Particles obtaining and characterization. International Journal of Biological Macromolecules, 2020, 147, 629-642.	3.6	57
15	Porphyrin-functionalized mesoporous organosilica nanoparticles for two-photon imaging of cancer cells and drug delivery. Journal of Materials Chemistry B, 2015, 3, 3681-3684.	2.9	55
16	Tunable Arene Ruthenium Metallaprisms to Transport, Shield, and Release Porphin in Cancer Cells. Organometallics, 2015, 34, 4138-4146.	1.1	52
17	Porous Porphyrinâ€Based Organosilica Nanoparticles for NIR Twoâ€Photon Photodynamic Therapy and Gene Delivery in Zebrafish. Advanced Functional Materials, 2018, 28, 1800235.	7.8	50
18	Photostability and photobactericidal properties of porphyrin-layered double hydroxide–polyurethane composite films. Journal of Materials Chemistry B, 2013, 1, 2139.	2.9	45

#	Article	IF	Citations
19	Photodynamic Therapy Activity of New Porphyrin-Xylan-Coated Silica Nanoparticles in Human Colorectal Cancer. Cancers, 2019, 11, 1474.	1.7	45
20	Glycosyl bis-porphyrin conjugates: Synthesis and potential application in PDT. Bioorganic and Medicinal Chemistry, 2006, 14, 7745-7760.	1.4	44
21	RGD-Porphyrin Conjugates: Synthesis and Potential Application in Photodynamic Therapy. European Journal of Organic Chemistry, 2003, 2003, 1486-1493.	1.2	41
22	Amino porphyrins as photoinhibitors of Gram-positive and -negative bacteria. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 4207-4211.	1.0	41
23	Efficient synthesis of RGD-containing cyclic peptide–porphyrin conjugates by ring-closing metathesis on solid support. Tetrahedron Letters, 2004, 45, 5295-5299.	0.7	41
24	Delivery of tanshinone IIA and \hat{l}_{\pm} -mangostin from gold/PEI/cyclodextrin nanoparticle platform designed for prostate cancer chemotherapy. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 2503-2506.	1.0	41
25	Porphyrin-xylan-coated silica nanoparticles for anticancer photodynamic therapy. Carbohydrate Polymers, 2019, 213, 168-175.	5.1	41
26	Toward Glycosylated Peptidic Porphyrins : a New Strategy for PDT?. Tetrahedron Letters, 1997, 38, 6391-6394.	0.7	38
27	A facile and rapid iodine-catalyzed meso-tetraphenylporphyrin synthesis using microwave activation. Tetrahedron Letters, 2008, 49, 5537-5539.	0.7	37
28	DNA photocleavage by porphyrin–polyamine conjugates. Bioorganic and Medicinal Chemistry, 2009, 17, 767-776.	1.4	37
29	Photodynamic treatment induces cell death by apoptosis or autophagy depending on the melanin content in two B16 melanoma cell lines. Oncology Reports, 2013, 29, 1196-1200.	1.2	34
30	Curcumin–cyclodextrin/cellulose nanocrystals improve the phenotype of Charcot-Marie-Tooth-1A transgenic rats through the reduction of oxidative stress. Free Radical Biology and Medicine, 2020, 161, 246-262.	1.3	34
31	Lysine Analogue of Polymyxin B as a Significant Opportunity for Photodynamic Antimicrobial Chemotherapy. ACS Medicinal Chemistry Letters, 2018, 9, 11-16.	1.3	32
32	Synthesis and photocytotoxic activity of new chlorin–polyamine conjugates. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 3188-3192.	1.0	31
33	Delivery of porphin to cancer cells by organometallic Rh(III) and Ir(III) metalla-cages. Journal of Organometallic Chemistry, 2015, 787, 44-50.	0.8	31
34	Enhancement of photobactericidal activity of chlorin-e6-cellulose nanocrystals by covalent attachment of polymyxin B. Journal of Materials Chemistry B, 2017, 5, 6953-6962.	2.9	31
35	An efficient route to VEGF-like peptide porphyrin conjugates via microwave-assisted  click-chemistry'. Tetrahedron, 2009, 65, 7385-7392.	1.0	30
36	<i>Meso</i> -functionalized aminoporphyrins as efficient agents for photo-antibacterial surfaces. Journal of Porphyrins and Phthalocyanines, 2010, 14, 925-931.	0.4	30

#	Article	IF	CITATIONS
37	Optimization of the arsenazo-III method for the determination of uranium in water and plant samples. Talanta, 2013, 115, 751-754.	2.9	30
38	An efficient route to dimeric porphyrin–RGD peptide conjugates via olefin metathesis. Tetrahedron, 2008, 64, 364-371.	1.0	29
39	Resistance to 3â€HTMCâ€Induced Apoptosis Through Activation of PI3K/Akt, MEK/ERK, and p38/COXâ€2/PGE ₂ Pathways in Human HTâ€29 and HCT116 Colorectal Cancer Cells. Journal of Cellular Biochemistry, 2016, 117, 2875-2885.	1.2	29
40	Design and synthesis of water-soluble polyaminated chlorins andÂbacteriochlorins – With near-infrared absorption. Dyes and Pigments, 2013, 98, 609-614.	2.0	28
41	Synthesis and biological evaluation of polyamine-porphyrin conjugates as potential agents in photodynamic therapy (PDT). Journal of Porphyrins and Phthalocyanines, 2002, 06, 130-134.	0.4	27
42	Polysaccharides-Based Complex Particles' Protective Role on the Stability and Bioactivity of Immobilized Curcumin. International Journal of Molecular Sciences, 2021, 22, 3075.	1.8	27
43	Analysis of the in vitro and in vivo effects of photodynamic therapy on prostate cancer by using new photosensitizers, protoporphyrin IX-polyamine derivatives. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1676-1690.	1.1	26
44	Efficient Singlet Oxygen Photogeneration by Zinc Porphyrin Dimers upon One- and Two-Photon Excitation. Journal of Physical Chemistry B, 2019, 123, 4271-4277.	1.2	26
45	Synthesis of New Glucosylated Porphyrins Bearing an αâ€dâ€Linkage. Journal of Carbohydrate Chemistry, 2006, 25, 345-360.	0.4	25
46	Magnetic Dextran Nanoparticles That Bear Hydrophilic Porphyrin Derivatives: Bimodal Agents for Potential Application in Photodynamic Therapy. ChemPlusChem, 2015, 80, 1416-1426.	1.3	24
47	Hydrophilic chlorin-conjugated magnetic nanoparticlesâ€"Potential anticancer agent for the treatment of melanoma by PDT. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 2486-2490.	1.0	23
48	In vitro anticancer activity of new gold(III) porphyrin complexes in colon cancer cells. Journal of Inorganic Biochemistry, 2017, 177, 27-38.	1.5	23
49	Functionalization of phosphocalcic bioceramics for bone repair applications. Materials Science and Engineering C, 2019, 95, 343-354.	3.8	22
50	Synergistic enhancement of tolerance mechanisms in response to photoactivation of cationic tetra (N-methylpyridyl) porphyrins in tomato plantlets. Journal of Photochemistry and Photobiology B: Biology, 2016, 156, 69-78.	1.7	21
51	Antibacterial activity of the lichens <i>Usnea Florida</i> and <i>Flavoparmelia caperata</i> (Parmeliaceae). Natural Product Research, 2020, 34, 3358-3362.	1.0	21
52	Synthesis and biological evaluation of chalcone-polyamine conjugates as novel vectorized agents in colorectal and prostate cancer chemotherapy. European Journal of Medicinal Chemistry, 2021, 222, 113586.	2.6	21
53	Berberis libanotica extract targets NF-κB/COX-2, PI3K/Akt and mitochondrial/caspase signalling to induce human erythroleukemia cell apoptosis. International Journal of Oncology, 2015, 47, 220-230.	1.4	20
54	Synthesis and photobactericidal properties of a neutral porphyrin grafted onto lignocellulosic fibers. Materials Science and Engineering C, 2016, 62, 61-67.	3.8	20

#	Article	IF	Citations
55	Aqueous extraction of glucuronoxylans from chestnut wood: New strategy for lignin oxidation using phthalocyanine or porphyrin/H2O2 system. Bioresource Technology, 2010, 101, 6538-6544.	4.8	19
56	Chemical Composition and Antioxidant, Anti-Inflammatory, and Antiproliferative Activities of Lebanese Ephedra Campylopoda Plant. Medical Science Monitor Basic Research, 2017, 23, 313-325.	2.6	19
57	Triphenylphosphonium-substituted phthalocyanine: Design, synthetic strategy, photoproperties and photodynamic activity. Journal of Porphyrins and Phthalocyanines, 2018, 22, 552-561.	0.4	19
58	Encapsulation of a Ru(II) Polypyridyl Complex into Polylactide Nanoparticles for Antimicrobial Photodynamic Therapy. Pharmaceutics, 2020, 12, 961.	2.0	19
59	Photophysical and Bactericidal Properties of Pyridinium and Imidazolium Porphyrins for Photodynamic Antimicrobial Chemotherapy. Molecules, 2021, 26, 1122.	1.7	19
60	Antibacterial activity of a photosensitive hybrid cellulose fabric. Photochemical and Photobiological Sciences, 2018, 17, 1780-1786.	1.6	18
61	New Phenalenone Derivatives: Synthesis and Evaluation of Their Singlet Oxygen Quantum Yield. ACS Omega, 2020, 5, 28264-28272.	1.6	18
62	Photodynamic effects of porphyrin–polyamine conjugates in human breast cancer and keratinocyte cell lines. Journal of Photochemistry and Photobiology B: Biology, 2011, 103, 201-206.	1.7	16
63	Photodynamic inactivation of Botrytis cinerea by an anionic porphyrin: an alternative pest management of grapevine. Scientific Reports, 2020, 10, 17438.	1.6	16
64	Porphyrin/Chlorin Derivatives as Promising Molecules for Therapy of Colorectal Cancer. Molecules, 2021, 26, 7268.	1.7	16
65	Uncommon Chlorinated Xanthone and Other Antibacterial Compounds from the Lichen Cladonia incrassata. Planta Medica, 2014, 80, 931-935.	0.7	15
66	Design and multi-step synthesis of chalcone-polyamine conjugates as potent antiproliferative agents. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 4354-4357.	1.0	15
67	Profiling and seasonal variation of chemical constituents from Pseudotsuga menziesii wood. Industrial Crops and Products, 2018, 117, 34-49.	2.5	15
68	Adsorption of fulvic and humic like acids on surfaces of clays: Relation with SUVA index and acidity. Applied Clay Science, 2018, 154, 83-90.	2.6	14
69	Pseudo porphyrinyl amino acids based on 1,3,5-triazine scaffold: new tools for the synthesis of peptidic porphyrins. Tetrahedron Letters, 2011, 52, 2977-2979.	0.7	13
70	An easy one-pot desilylation/copper-free Sonogashira cross-coupling reaction assisted by tetra-butylammonium fluorideÂ(TBAF): synthesis of highly Ï€-conjugated porphyrins. Tetrahedron, 2013, 69, 5098-5103.	1.0	13
71	Enhancement of hydrosolubility and in vitro antiproliferative properties of chalcones following encapsulation into \hat{I}^2 -cyclodextrin/cellulose-nanocrystal complexes. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1895-1898.	1.0	13
72	High yield preparation of purpurin-18 from Spirulina maxima. Dyes and Pigments, 2011, 88, 125-127.	2.0	12

#	Article	IF	Citations
73	Enhanced cytotoxicity of gold porphyrin complexes after inclusion in cyclodextrin scaffolds adsorbed on polyethyleneimine-coated gold nanoparticles. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1065-1068.	1.0	11
74	<scp>Acetylxylanâ€pheophorbide</scp> â€a nanoparticles designed for <scp>tumorâ€targeted</scp> photodynamic therapy. Journal of Applied Polymer Science, 2021, 138, 50799.	1.3	11
75	Xylan-Based Cross-Linked Hydrogel for Photodynamic Antimicrobial Chemotherapy. ACS Applied Bio Materials, 2021, 4, 7204-7212.	2.3	11
76	One-Pot Silver Nanoring Synthesis. Nanoscale Research Letters, 2010, 5, 566-569.	3.1	10
77	Sensing of the uranyl ion based on its complexation with bisphosphonate-capped gold nanoparticles. Materials Letters, 2014, 122, 208-211.	1.3	10
78	The mannose 6-phosphate receptor targeted with porphyrin-based periodic mesoporous organosilica nanoparticles for rhabdomyosarcoma theranostics. Biomaterials Science, 2020, 8, 3678-3684.	2.6	10
79	Development of Phenalenone-Triazolium Salt Derivatives for aPDT: Synthesis and Antibacterial Screening. Antibiotics, 2021, 10, 626.	1.5	10
80	Lichen Polyphenolic Compounds for the Eradication of Candida albicans Biofilms. Frontiers in Cellular and Infection Microbiology, 2021, 11, 698883.	1.8	10
81	Novel polycarboxylate porphyrins: Synthesis, characterization, photophysical properties and preliminary antimicrobial study against Gram-positive bacteria. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 355-362.	1.0	9
82	Design and synthesis of zinc protoporphyrin IX-adamantane/cyclodextrin/cellulose nanocrystals complexes for anticancer photodynamic therapy. Bioorganic and Medicinal Chemistry Letters, 2021, 41, 128024.	1.0	9
83	Synthesis and Properties of BODIPY Appended Tetraphenylethylene Scaffolds as Photoactive Arrays. European Journal of Organic Chemistry, 2021, 2021, 4136-4143.	1.2	9
84	Responses of an adventitious fastâ€growing plant to photodynamic stress: comparative study of anionic and cationic porphyrin effect on <scp><i>Arabidopsis thaliana</i></scp> . Physiologia Plantarum, 2018, 162, 379-390.	2.6	8
85	Modulation of intermolecular interactions in new pyrimidine–porphyrin system as two-photon absorbing photosensitizers. Tetrahedron, 2015, 71, 2428-2434.	1.0	7
86	Unexpected features of exponentially growing Tobacco Bright Yellow-2 cell suspension culture in relation to excreted extracellular polysaccharides and cell wall composition. Glycoconjugate Journal, 2017, 34, 585-590.	1.4	7
87	Chemical Composition, Antioxidant, Anti-Inflammatory, and Antiproliferative Activities of the Plant Lebanese Crataegus Azarolus L. Medical Science Monitor Basic Research, 2017, 23, 270-284.	2.6	7
88	Plant Photodynamic Stress: What's New?. Frontiers in Plant Science, 2018, 9, 681.	1.7	7
89	Synthesis and Investigation of Flavanone Derivatives as Potential New Anti-Inflammatory Agents. Molecules, 2022, 27, 1781.	1.7	7
90	Synthesis and characterization of xylan-graft-poly(L-lactide). International Journal of Polymer Analysis and Characterization, 2018, 23, 193-206.	0.9	6

#	Article	IF	CITATIONS
91	Does low hydroxyl group surface density explain less bacterial adhesion on porous alumina?. Orthopaedics and Traumatology: Surgery and Research, 2019, 105, 473-477.	0.9	6
92	Advanced protocol to functionalize CaP bioceramic surface with peptide sequences and effect on murine pre-osteoblast cells proliferation. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1069-1073.	1.0	4
93	Photodegradation of tebuconazole mediated by a novel hybrid phenalenone based photosensitizer. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 408, 113124.	2.0	4
94	Microwave-assisted expeditious O-alkylation of meso-hydroxyphenylporphyrins. Journal of Porphyrins and Phthalocyanines, 2009, $13,888-892$.	0.4	3
95	Synthesis and supramolecular arrangement of new stearoyl acid-based phenalenone derivatives. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 612, 125988.	2.3	3
96	<scp>Cationic</scp> porphyrin–xylan conjugate hydrogels for photodynamic antimicrobial chemotherapy. Journal of Applied Polymer Science, 2022, 139, .	1.3	3
97	Exploring the Use of the Suzuki Coupling Reaction in the Synthesis of 4′-Alkyl-2′-hydroxyacetophenones. Synlett, 2014, 25, 564-568.	1.0	2
98	Crossing the First Threshold: New Insights into the Influence of the Chemical Structure of Anionic Porphyrins on Plant Cell Wall Interactions and Photodynamic Cell Death Induction. Biochemistry, 2019, 58, 2188-2197.	1.2	2
99	Photodynamic therapy activity of new porphyrin-xylan-coated silica nanoparticles in a human colorectal cancer in vivo model. , 2019, , .		2
100	Prebiotic Isomaltooligosaccharide Provides an Advantageous Fitness to the Probiotic Bacillus subtilis CU1. Applied Sciences (Switzerland), 2022, 12, 6404.	1.3	2
101	Regioselective reduction of 5-aryl-10,15,20-tris(pyridyl) porphyrin to 5-aryl-10,15,20-tris(pyridyl)dihydroporphyrin (chlorin). Journal of Porphyrins and Phthalocyanines, 2019, 23, 1380-1397.	0.4	1
102	Design and synthesis of triphenylphosphonium-porphyrin@xylan nanoparticles for anticancer photodynamic therapy. Comptes Rendus Chimie, 2021, 24, 127-140.	0.2	1
103	Synthesis and cellular uptake of superparamagnetic dextran-nanoparticles with porphyrinic motifs grafted by esterification. E-Polymers, 2007, 7, .	1.3	0
104	Magnetic Dextran Nanoparticles That Bear Hydrophilic Porphyrin Derivatives: Bimodal Agents for Potential Application in Photodynamic Therapy. ChemPlusChem, 2015, 80, 1367-1367.	1.3	0