
David M Lehmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7264091/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comparison of Pollen and Syrup Exposure Routes in <i>Bombus impatiens</i> (Hymenoptera: Apidae) Microcolonies: Implications for Pesticide Risk Assessment. Environmental Entomology, 2022, 51, 613-620.	0.7	5
2	Impacts of Neonicotinoids on the Bumble Bees <i>Bombus terrestris</i> and <i>Bombus impatiens</i> Examined through the Lens of an Adverse Outcome Pathway Framework. Environmental Toxicology and Chemistry, 2021, 40, 309-322.	2.2	17
3	A systematic scoping review of the methodological approaches and effects of pesticide exposure on solitary bees. PLoS ONE, 2021, 16, e0251197.	1.1	19
4	Effects of the Neonicotinoid Acetamiprid in Pollen on <i>Bombus impatiens</i> Microcolony Development. Environmental Toxicology and Chemistry, 2020, 39, 2560-2569.	2.2	12
5	The Importance of Males to Bumble Bee (Bombus Species) Nest Development and Colony Viability. Insects, 2020, 11, 506.	1.0	30
6	Physiological responses to cisplatin using a mouse hypersensitivity model. Inhalation Toxicology, 2020, 32, 68-78.	0.8	2
7	Effects of the neonicotinoid acetamiprid in syrup on Bombus impatiens (Hymenoptera: Apidae) microcolony development. PLoS ONE, 2020, 15, e0241111.	1.1	8
8	Bombus (Hymenoptera: Apidae) Microcolonies as a Tool for Biological Understanding and Pesticide Risk Assessment. Environmental Entomology, 2019, 48, 1249-1259.	0.7	35
9	Workshop on Pesticide Exposure Assessment Paradigm for Non- <i>Apis</i> Bees: Foundation and Summaries. Environmental Entomology, 2019, 48, 4-11.	0.7	52
10	Skin sensitization testing needs and data uses by US regulatory and research agencies. Archives of Toxicology, 2019, 93, 273-291.	1.9	16
11	Comparison of Pesticide Exposure in Honey Bees (Hymenoptera: Apidae) and Bumble Bees (Hymenoptera:) Tj ET(2qJ.J 0.78	34314 rgB⊺
12	A cost-effective colourimetric assay for quantifying hydrogen peroxide in honey. Access Microbiology, 2019, 1, e000065.	0.2	11
13	Cross-reactivity between halogenated platinum salts in an immediate-type respiratory hypersensitivity model. Inhalation Toxicology, 2018, 30, 472-481.	0.8	5
14	Development and utilization of a unique in vitro antigen presentation co-culture model for detection of immunomodulating substances. Toxicology in Vitro, 2018, 53, 20-28.	1.1	2
15	Use of the LLNA:BrdU-ELISA for Skin Sensitization Hazard Assessment. Methods in Molecular Biology, 2018, 1803, 101-116.	0.4	2
16	Prediction of skin sensitization potency using machine learning approaches. Journal of Applied Toxicology, 2017, 37, 792-805.	1.4	52
17	Multivariate models for prediction of human skin sensitization hazard. Journal of Applied Toxicology, 2017, 37, 347-360.	1.4	58
18	Integrated decision strategies for skin sensitization hazard. Journal of Applied Toxicology, 2016, 36, 1150-1162.	1.4	87

David M Lehmann

#	Article	IF	CITATIONS
19	Development and utilization of an <i>ex vivo</i> bromodeoxyuridine local lymph node assay protocol for assessing potential chemical sensitizers. Journal of Applied Toxicology, 2015, 35, 29-40.	1.4	16
20	Lung function changes in mice sensitized to ammonium hexachloroplatinate. Inhalation Toxicology, 2015, 27, 468-480.	0.8	5
21	Nonclinical safety evaluation of boric acid and a novel borate-buffered contact lens multi-purpose solution, Biotrueâ,,¢ multi-purpose solution. Contact Lens and Anterior Eye, 2010, 33, S24-S32.	0.8	20
22	Impact of assay selection and study design on the outcome of cytotoxicity testing of medical devices: The case of multi-purpose vision care solutions. Toxicology in Vitro, 2010, 24, 1306-1313.	1.1	13
23	G Protein β γ Subunits as Targets for Small Molecule Therapeutic Development. Combinatorial Chemistry and High Throughput Screening, 2008, 11, 382-395.	0.6	42
24	Differential Targeting of GÂÂ-Subunit Signaling with Small Molecules. Science, 2006, 312, 443-446.	6.0	214