D Horvath

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7263733/publications.pdf

Version: 2024-02-01

147566 168136 3,291 103 31 53 citations h-index g-index papers 106 106 106 2899 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthl: A New Open-Source Tool for Synthon-Based Library Design. Journal of Chemical Information and Modeling, 2022, 62, 2151-2163.	2.5	18
2	HIV-1 drug resistance profiling using amino acid sequence space cartography. Bioinformatics, 2022, 38, 2307-2314.	1.8	5
3	A Close-up Look at the Chemical Space of Commercially Available Building Blocks for Medicinal Chemistry. Journal of Chemical Information and Modeling, 2022, 62, 2171-2185.	2.5	32
4	Chemography: Searching for Hidden Treasures. Journal of Chemical Information and Modeling, 2021, 61, 179-188.	2.5	14
5	Discovery of novel chemical reactions by deep generative recurrent neural network. Scientific Reports, 2021, 11, 3178.	1.6	40
6	NP Navigator: A New Look at the Natural Product Chemical Space. Molecular Informatics, 2021, 40, e2100068.	1.4	16
7	Computer-Aided Design of New Physical Solvents for Hydrogen Sulfide Absorption. Industrial & Computer-Aided Design of New Physical Solvents for Hydrogen Sulfide Absorption. Industrial & Computer Sul	1.8	9
8	Chemoinformatics-Driven Design of New Physical Solvents for Selective CO ₂ Absorption. Environmental Science & Envir	4.6	16
9	NP Navigator: A New Online Tool for the Exploration of the Natural Products Chemical Space. Medical Sciences Forum, 2021, 7, .	0.5	O
10	Diversifying chemical libraries with generative topographic mapping. Journal of Computer-Aided Molecular Design, 2020, 34, 805-815.	1.3	7
11	Trustworthiness, the Key to Grid-Based Map-Driven Predictive Model Enhancement and Applicability Domain Control. Journal of Chemical Information and Modeling, 2020, 60, 6020-6032.	2.5	1
12	Autoignition temperature: comprehensive data analysis and predictive models. SAR and QSAR in Environmental Research, 2020, 31, 597-613.	1.0	4
13	A Chemographic Audit of anti oronavirus Structureâ€activity Information from Public Databases (ChEMBL). Molecular Informatics, 2020, 39, e2000080.	1.4	16
14	"Big Data―Fast Chemoinformatics Model to Predict Generalized Born Radius and Solvent Accessibility as a Function of Geometry. Journal of Chemical Information and Modeling, 2020, 60, 2951-2965.	2.5	1
15	Application of the mol2vec Technology to Largeâ€size Data Visualization and Analysis. Molecular Informatics, 2020, 39, e1900170.	1.4	8
16	Modelling of ready biodegradability based on combined public and industrial data sources. SAR and QSAR in Environmental Research, 2020, 31, 171-186.	1.0	14
17	Parallel Generative Topographic Mapping: An Efficient Approach for Big Data Handling. Molecular Informatics, 2020, 39, 2000009.	1.4	6
18	Predictive Models for Kinetic Parameters of Cycloaddition Reactions. Molecular Informatics, 2019, 38, e1800077.	1.4	25

#	Article	IF	Citations
19	Consensus models to predict oral rat acute toxicity and validation on a dataset coming from the industrial context. SAR and QSAR in Environmental Research, 2019, 30, 879-897.	1.0	22
20	Generative Topographic Mapping of the Docking Conformational Space. Molecules, 2019, 24, 2269.	1.7	4
21	QSPR models for bioconcentration factor (BCF): are they able to predict data of industrial interest?. SAR and QSAR in Environmental Research, 2019, 30, 507-524.	1.0	18
22	In silico Design, Virtual Screening and Synthesis of Novel Electrolytic Solvents. Molecular Informatics, 2019, 38, 1900014.	1.4	5
23	Crystal structure of a xylulose 5-phosphate phosphoketolase. Insights into the substrate specificity for xylulose 5-phosphate. Journal of Structural Biology, 2019, 207, 85-102.	1.3	8
24	Prediction of the Glass-Transition Temperatures of Linear Homo/Heteropolymers and Cross-Linked Epoxy Resins. ACS Applied Polymer Materials, 2019, 1, 1430-1442.	2.0	25
25	<i>CovaDOTS: In Silico</i> Chemistry-Driven Tool to Design Covalent Inhibitors Using a Linking Strategy. Journal of Chemical Information and Modeling, 2019, 59, 1472-1485.	2.5	13
26	Getting to Know the Neighbours with GTM: The Case of Antiviral Compounds. Molecular Informatics, 2019, 38, 1800166.	1.4	7
27	Multi-task generative topographic mapping in virtual screening. Journal of Computer-Aided Molecular Design, 2019, 33, 331-343.	1.3	17
28	De Novo Molecular Design by Combining Deep Autoencoder Recurrent Neural Networks with Generative Topographic Mapping. Journal of Chemical Information and Modeling, 2019, 59, 1182-1196.	2.5	93
29	Generative topographic mapping in drug design. Drug Discovery Today: Technologies, 2019, 32-33, 99-107.	4.0	19
30	Virtual Screening with Generative Topographic Maps: How Many Maps Are Required?. Journal of Chemical Information and Modeling, 2019, 59, 564-572.	2.5	20
31	Pros and cons of virtual screening based on public "Big Data― In silico mining for new bromodomain inhibitors. European Journal of Medicinal Chemistry, 2019, 165, 258-272.	2.6	12
32	Evolution of commercially available compounds for HTS. Drug Discovery Today, 2019, 24, 390-402.	3.2	53
33	Monitoring of the Conformational Space of Dipeptides by Generative Topographic Mapping. Molecular Informatics, 2018, 37, 1700115.	1.4	3
34	Transductive Ridge Regression in Structureâ€activity Modeling. Molecular Informatics, 2018, 37, 1700112.	1.4	3
35	Mapping of the Available Chemical Space versus the Chemical Universe of Lead‣ike Compounds. ChemMedChem, 2018, 13, 540-554.	1.6	33
36	Specific Targeting of Plant and Apicomplexa Parasite Tubulin through Differential Screening Using In Silico and Assay-Based Approaches. International Journal of Molecular Sciences, 2018, 19, 3085.	1.8	10

#	Article	IF	Citations
37	Rescoring of docking poses under Occam's Razor: are there simpler solutions?. Journal of Computer-Aided Molecular Design, 2018, 32, 877-888.	1.3	15
38	Visualization and Analysis of Complex Reaction Data: The Case of Tautomeric Equilibria. Molecular Informatics, 2018, 37, e1800056.	1.4	7
39	Integrated Strategy for Lead Optimization Based on Fragment Growing: The Diversity-Oriented-Target-Focused-Synthesis Approach. Journal of Medicinal Chemistry, 2018, 61, 5719-5732.	2.9	51
40	Generative Topographic Mapping of Conformational Space. Molecular Informatics, 2017, 36, 1700036.	1.4	10
41	Privileged Structural Motif Detection and Analysis Using Generative Topographic Maps. Journal of Chemical Information and Modeling, 2017, 57, 1218-1232.	2.5	9
42	Virtual screening, synthesis and biological evaluation of DNA intercalating antiviral agents. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 3915-3919.	1.0	15
43	QSAR modeling and chemical space analysis of antimalarial compounds. Journal of Computer-Aided Molecular Design, 2017, 31, 441-451.	1.3	13
44	From bird's eye views to molecular communities: two-layered visualization of structure–activity relationships in large compound data sets. Journal of Computer-Aided Molecular Design, 2017, 31, 961-977.	1.3	5
45	Neighboring Structure Visualization on a Gridâ€based Layout. Molecular Informatics, 2017, 36, 1700047.	1.4	0
46	Generative Topographic Mapping Approach to Chemical Space Analysis. Challenges and Advances in Computational Chemistry and Physics, 2017, , 167-199.	0.6	4
47	CERAPP: Collaborative Estrogen Receptor Activity Prediction Project. Environmental Health Perspectives, 2016, 124, 1023-1033.	2.8	264
48	In Silico Mining for Antimalarial Structure-Activity Knowledge and Discovery of Novel Antimalarial Curcuminoids. Molecules, 2016, 21, 853.	1.7	16
49	Prediction of Activity Cliffs Using Condensed Graphs of Reaction Representations, Descriptor Recombination, Support Vector Machine Classification, and Support Vector Regression. Journal of Chemical Information and Modeling, 2016, 56, 1631-1640.	2.5	28
50	Predictive Models for the Free Energy of Hydrogen Bonded Complexes with Single and Cooperative Hydrogen Bonds. Molecular Informatics, 2016, 35, 629-638.	1.4	9
51	Chemical Space Mapping and Structure–Activity Analysis of the ChEMBL Antiviral Compound Set. Journal of Chemical Information and Modeling, 2016, 56, 1438-1454.	2.5	31
52	Redox Polypharmacology as an Emerging Strategy to Combat Malarial Parasites. ChemMedChem, 2016, 11, 1339-1351.	1.6	28
53	Predictive Models for Halogenâ€bond Basicity of Binding Sites of Polyfunctional Molecules. Molecular Informatics, 2016, 35, 70-80.	1.4	12
54	Kernel Target Alignment Parameter: A New Modelability Measure for Regression Tasks. Journal of Chemical Information and Modeling, 2016, 56, 6-11.	2.5	14

#	Article	IF	CITATIONS
55	S4MPLEâ€"Sampler for Multiple Protein-Ligand Entities: Methodology and Rigid-Site Docking Benchmarking. Molecules, 2015, 20, 8997-9028.	1.7	25
56	Mappability of drug-like space: towards a polypharmacologically competent map of drug-relevant compounds. Journal of Computer-Aided Molecular Design, 2015, 29, 1087-1108.	1.3	52
57	Electrochemical Properties of Substituted 2â€Methylâ€1,4â€Naphthoquinones: Redox Behavior Predictions. Chemistry - A European Journal, 2015, 21, 3415-3424.	1.7	35
58	Expert System for Predicting Reaction Conditions: The Michael Reaction Case. Journal of Chemical Information and Modeling, 2015, 55, 239-250.	2.5	65
59	GTMâ€Based QSAR Models and Their Applicability Domains. Molecular Informatics, 2015, 34, 348-356.	1.4	52
60	Stargate GTM: Bridging Descriptor and Activity Spaces. Journal of Chemical Information and Modeling, 2015, 55, 2403-2410.	2.5	28
61	Chemical Data Visualization and Analysis with Incremental Generative Topographic Mapping: Big Data Challenge. Journal of Chemical Information and Modeling, 2015, 55, 84-94.	2.5	67
62	Prediction of Drug Induced Liver Injury Using Molecular and Biological Descriptors. Combinatorial Chemistry and High Throughput Screening, 2015, 18, 315-322.	0.6	23
63	An Evolutionary Optimizer of libsvm Models. Challenges, 2014, 5, 450-472.	0.9	52
64	Computational chemogenomics: Is it more than inductive transfer?. Journal of Computer-Aided Molecular Design, 2014, 28, 597-618.	1.3	26
65	Individual Hydrogenâ€Bond Strength QSPR Modelling with ISIDA Local Descriptors: a Step Towards Polyfunctional Molecules. Molecular Informatics, 2014, 33, 477-487.	1.4	19
66	Design of a Generalâ€Purpose European Compound Screening Library for EUâ€OPENSCREEN. ChemMedChem, 2014, 9, 2309-2326.	1.6	29
67	Quantitative Structure–Property Relationship Modeling: A Valuable Support in High-Throughput Screening Quality Control. Analytical Chemistry, 2014, 86, 2510-2520.	3.2	18
68	Generative Topographic Mapping-Based Classification Models and Their Applicability Domain: Application to the Biopharmaceutics Drug Disposition Classification System (BDDCS). Journal of Chemical Information and Modeling, 2013, 53, 3318-3325.	2.5	55
69	S4MPLE – Sampler For Multiple Protein–Ligand Entities: Simultaneous Docking of Several Entities. Journal of Chemical Information and Modeling, 2013, 53, 88-102.	2.5	26
70	Publicly available models to predict normal boiling point of organic compounds. Thermochimica Acta, 2013, 553, 60-67.	1.2	7
71	In Silico Fragment-Based Drug Discovery: Setup and Validation of a Fragment-to-Lead Computational Protocol Using S4MPLE. Journal of Chemical Information and Modeling, 2013, 53, 836-851.	2.5	33
72	Do Not Hesitate to Use Tversky—and Other Hints for Successful Active Analogue Searches with Feature Count Descriptors. Journal of Chemical Information and Modeling, 2013, 53, 1543-1562.	2.5	19

#	Article	IF	Citations
73	Models for Identification of Erroneous Atom-to-Atom Mapping of Reactions Performed by Automated Algorithms. Journal of Chemical Information and Modeling, 2012, 52, 3116-3122.	2.5	20
74	Mining Chemical Reactions Using Neighborhood Behavior and Condensed Graphs of Reactions Approaches. Journal of Chemical Information and Modeling, 2012, 52, 2325-2338.	2.5	24
75	Interpretability of SAR/QSAR Models of any Complexity by Atomic Contributions. Molecular Informatics, 2012, 31, 639-642.	1.4	32
76	Generative Topographic Mapping (GTM): Universal Tool for Data Visualization, Structureâ€Activity Modeling and Dataset Comparison. Molecular Informatics, 2012, 31, 301-312.	1.4	107
77	Fragment-Based Drug Design: Computational and Experimental State of the Art. Combinatorial Chemistry and High Throughput Screening, 2011, 14, 500-520.	0.6	37
78	Pharmacophore-Based Virtual Screening. Methods in Molecular Biology, 2010, 672, 261-298.	0.4	60
79	Applicability Domains for Classification Problems: Benchmarking of Distance to Models for Ames Mutagenicity Set. Journal of Chemical Information and Modeling, 2010, 50, 2094-2111.	2.5	202
80	ISIDA Property‣abelled Fragment Descriptors. Molecular Informatics, 2010, 29, 855-868.	1.4	111
81	Simplified chain folding models as metaheuristic benchmark for tuning real protein folding algorithms?. , 2010, , .		1
82	Predicting the Predictability: A Unified Approach to the Applicability Domain Problem of QSAR Models. Journal of Chemical Information and Modeling, 2009, 49, 1762-1776.	2.5	145
83	Parallel multi-objective algorithms for the molecular docking problem. , 2008, , .		13
84	ISIDA - Platform for Virtual Screening Based on Fragment and Pharmacophoric Descriptors. Current Computer-Aided Drug Design, 2008, 4, 191-198.	0.8	173
85	Grid-based evolutionary strategies applied to the conformational sampling problem. , 2007, , .		3
86	Stochastic versus Stepwise Strategies for Quantitative Structureâ ⁻ Activity Relationship GenerationHow Much Effort May the Mining for Successful QSAR Models Take?. Journal of Chemical Information and Modeling, 2007, 47, 927-939.	2.5	32
87	A parallel hybrid genetic algorithm for protein structure prediction on the computational grid. Future Generation Computer Systems, 2007, 23, 398-409.	4.9	39
88	Optimized Evolutionary Strategies in Conformational Sampling. Soft Computing, 2007, 11, 63-79.	2.1	10
89	Molecular Similarity and Property Similarity. Current Topics in Medicinal Chemistry, 2004, 4, 589-600.	1.0	42
90	Neighborhood Behavior. Fuzzy Molecular Descriptors and their Influence on the Relationship between Structural Similarity and Property Similarity. QSAR and Combinatorial Science, 2003, 22, 498-509.	1.5	33

#	Article	IF	CITATIONS
91	From Hit to Lead. Analyzing Structureâ-'Profile Relationships. Journal of Medicinal Chemistry, 2001, 44, 3391-3401.	2.9	32
92	From Hit to Lead. Combining Two Complementary Methods for Focused Library Design. Application to $\hat{l}\frac{1}{4}$ Opiate Ligands. Journal of Medicinal Chemistry, 2001, 44, 3378-3390.	2.9	39
93	Recursive Partitioning Analysis of $\hat{l}^{1}\!\!/\!\!4$ -Opiate Receptor High Throughput Screening Results. SAR and QSAR in Environmental Research, 2001, 12, 181-212.	1.0	6
94	Reactivity Prediction Models Applied to the Selection of Novel Candidate Building Blocks for High-Throughput Organic Synthesis of Combinatorial Libraries. Journal of Chemical Information and Computer Sciences, 1999, 39, 1119-1127.	2.8	9
95	Slow Dynamics of the Cyclic Osmoregulated Periplasmic Glucan ofRalstonia solanacearumAs Revealed by Heteronuclear Relaxation Studies. Journal of the American Chemical Society, 1998, 120, 170-177.	6.6	21
96	A Virtual Screening Approach Applied to the Search for Trypanothione Reductase Inhibitors. Journal of Medicinal Chemistry, 1997, 40, 2412-2423.	2.9	138
97	New spermine and spermidine derivatives as potent inhibitors of Trypanosoma cruzi Trypanothione Reductase. Bioorganic and Medicinal Chemistry, 1997, 5, 1249-1256.	1.4	50
98	New potent inhibitors of trypanothione reductase from Trypanosoma cruzi in the 2-aminodiphenylsulfide series. European Journal of Medicinal Chemistry, 1997, 32, 39-52.	2.6	28
99	2-Amino diphenylsulfides as inhibitors of trypanothione reductase: modification of the side chain. Bioorganic and Medicinal Chemistry, 1996, 4, 891-899.	1.4	36
100	Combinatorial chemistry: A rational approach to chemical diversity. European Journal of Medicinal Chemistry, 1996, 31, 87-98.	2.6	39
101	Development and parametrization of continuum solvent models. I. Models based on the boundary element method. Journal of Chemical Physics, 1996, 104, 6679-6695.	1.2	34
102	Development and parametrization of continuum solvent models. II. A unified approach to the solvation problem. Journal of Chemical Physics, 1996, 105, 4197-4210.	1.2	11
103	Molecular topology. VIII: Centricities in molecular graphs. The mollen algorithm. Journal of Mathematical Chemistry, 1992, 11, 259-270.	0.7	5