Jacobus P Le Roux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7263676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neoproterozoic to Early Cambrian Crustal Evolution of the Pan-African Saldania Belt, South Africa. Precambrian Research, 1999, 97, 303-323.	1.2	101
2	Sediment transport patterns determined from grain size parameters: Overview and state of the art. Sedimentary Geology, 2007, 202, 473-488.	1.0	91
3	An alternative approach to the identification of net sediment transport paths based on grain-size trends. Sedimentary Geology, 1994, 94, 97-107.	1.0	74
4	Repeated mass strandings of Miocene marine mammals from Atacama Region of Chile point to sudden death at sea. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133316.	1.2	63
5	Grains in motion: A review. Sedimentary Geology, 2005, 178, 285-313.	1.0	62
6	Hydraulic behavior of tsunami backflows: insights from their modern and ancient deposits. Environmental Geology, 2005, 49, 65-75.	1.2	58
7	A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 2: continental conditions. Sedimentary Geology, 2012, 247-248, 21-38.	1.0	54
8	Analysis of sediment transport paths using grain-size parameters. Computers and Geosciences, 2002, 28, 717-721.	2.0	51
9	Unraveling the Peruvian Phase of the Central Andes: stratigraphy, sedimentology and geochronology of the Salar de Atacama Basin (22°30–23°S), northern Chile. Basin Research, 2016, 28, 365-392.	1.3	50
10	Rapid and major coastal subsidence during the late Miocene in south-central Chile. Journal of South American Earth Sciences, 2008, 25, 157-175.	0.6	49
11	A Pliocene mega-tsunami deposit and associated features in the Ranquil Formation, southern Chile. Sedimentary Geology, 2008, 203, 164-180.	1.0	43
12	Sedimentological processes in a scarp-controlled rocky shoreline to upper continental slope environment, as revealed by unusual sedimentary features in the Neogene Coquimbo Formation, north-central Chile. Sedimentary Geology, 2004, 165, 67-92.	1.0	40
13	Bay sedimentation as controlled by regional crustal behaviour, local tectonics and eustatic sea-level changes: Coquimbo Formation (Miocene–Pliocene), Bay of Tongoy, central Chile. Sedimentary Geology, 2006, 184, 133-153.	1.0	40
14	Neogene-Quaternary coastal and offshore sedimentation in north central Chile: Record of sea-level changes and implications for Andean tectonism. Journal of South American Earth Sciences, 2005, 19, 83-98.	0.6	39
15	Settling velocity of spheres: a new approach. Sedimentary Geology, 1992, 81, 11-16.	1.0	38
16	An extension of the Airy theory for linear waves into shallow water. Coastal Engineering, 2008, 55, 295-301.	1.7	38
17	Sedimentology of the RıÌmac-Chillón alluvial fan at Lima, Peru, as related to Plio-Pleistocene sea-level changes, glacial cycles and tectonics. Journal of South American Earth Sciences, 2000, 13, 499-510. -	0.6	37
18	A review of Tertiary climate changes in southern South America and the Antarctic Peninsula. Part 1: Oceanic conditions. Sedimentary Geology, 2012, 247-248, 1-20.	1.0	35

#	Article	IF	CITATIONS
19	Net sediment transport patterns inferred from grain-size trends, based upon definition of "transport vectorsâ€â€"comment. Sedimentary Geology, 1994, 90, 153-156.	1.0	34
20	Paleomagnetism and tectonics of the South Shetland Islands and the northern Antarctic Peninsula. Earth and Planetary Science Letters, 2011, 302, 299-313.	1.8	34
21	Can Dispersive Pressure Cause Inverse Grading in Grain Flows?: Discussion. Journal of Sedimentary Research, 2003, 73, 333-334.	0.8	32
22	A simple method to determine breaker height and depth for different deepwater wave height/length ratios and sea floor slopes. Coastal Engineering, 2007, 54, 271-277.	1.7	32
23	Determining the Channel Sinuosity of Ancient Fluvial Systems from Paleocurrent Data. Journal of Sedimentary Research, 1992, Vol. 62, .	0.8	31
24	Manganese nodules in the Miocene BahÃa Inglesa Formation, north-central Chile: Petrography, geochemistry, genesis and palaeoceanographic significance. Sedimentary Geology, 2009, 217, 128-139.	1.0	31
25	Sedimentologic development of a Late Oligocene–Miocene forearc embayment, Valdivia Basin Complex, southern Chile. Sedimentary Geology, 2000, 130, 27-44.	1.0	30
26	Nuevo esquema estratigrÃ;fico para los depósitos marinos mio-pliocenos del Ã;rea de Navidad (33º00'-34º30'S), Chile central. Andean Geology, 2006, 33, .	0.5	29
27	Tectonic events reflected by palaeocurrents, zircon geochronology, and palaeobotany in the Sierra Baguales of Chilean Patagonia. Tectonophysics, 2017, 695, 76-99.	0.9	25
28	Neoselachians and Chimaeriformes (Chondrichthyes) from the latest Cretaceous–Paleogene of Sierra Baguales, southernmost Chile. Chronostratigraphic, paleobiogeographic and paleoenvironmental implications. Journal of South American Earth Sciences, 2013, 48, 13-30.	0.6	24
29	Settling velocity of ellipsoidal grains as related to shape entropy. Sedimentary Geology, 1996, 101, 15-20.	1.0	23
30	Palaeoredox conditions and sequence stratigraphy of the Cretaceous storm-dominated, mixed siliciclastic-carbonate ramp in the Eastern Cordillera Basin (Colombia): Evidence from sedimentary geochemical proxies and facies analysis. Sedimentary Geology, 2018, 372, 1-24.	1.0	23
31	Paleoclimatic significance of lacustrine microbialites: A stable isotope case study of two lakes at Torres del Paine, southern Chile. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 297, 70-82.	1.0	22
32	A Late Eocene age proposal for the Loreto Formation (Brunswick Peninsula, southernmost Chile), based on fossil cartilaginous fishes, paleobotany and radiometric evidence. Andean Geology, 2012, 39, .	0.2	22
33	Aeolian erosion and sand transport over the Mejillones Pampa in the coastal Atacama Desert of northern Chile. Geomorphology, 2010, 120, 312-325.	1.1	21
34	Shape Entropy and Settling Velocity of Natural Grains. Journal of Sedimentary Research, 2002, 72, 363-366.	0.8	20
35	A Hydrodynamic Classification of Grain Shapes. Journal of Sedimentary Research, 2004, 74, 135-143.	0.8	19
36	Pliocene lahar deposits in the Coastal Cordillera of central Chile: Implications for uplift, avalanche deposits, and porphyry copper systems in the Main Andean Cordillera. Journal of South American Earth Sciences, 2006, 20, 369-381.	0.6	19

#	Article	IF	CITATIONS
37	Genesis of stratiform Uî—,Mo deposits in the Karoo Basin of South Africa. Ore Geology Reviews, 1993, 7, 485-509.	1.1	18
38	Entrainment threshold of natural grains in liquids determined empirically from dimensionless settling velocities and other measures of grain size. Sedimentary Geology, 1998, 119, 17-23.	1.0	17
39	Determining the Neogene behavior of the Nazca plate by geohistory analysis. Geology, 2005, 33, 165.	2.0	17
40	Geotectonic evolution of the Bransfield Basin, Antarctic Peninsula: insights from analogue models. Antarctic Science, 2008, 20, 185-196.	0.5	17
41	Lithostratigraphy and depositional environment of the Permian Nowra Sandstone in the southwestern Sydney Basin, Australia. Australian Journal of Earth Sciences, 1994, 41, 191-203.	0.4	16
42	A spreadsheet template for determining sediment transport vectors from grain-size parameters. Computers and Geosciences, 1994, 20, 433-440.	2.0	16
43	Late Cretaceous alkaline saline lake complexes of the Kalahari Group in northern Botswana. Journal of African Earth Sciences, 1995, 20, 7-15.	0.9	15
44	Paralic parasequences associated with Eocene sea-level oscillations in an active margin setting: Trihueco Formation of the Arauco Basin, Chile. Sedimentary Geology, 1997, 110, 257-276.	1.0	15
45	A simple method to predict the threshold of particle transport under oscillatory waves. Sedimentary Geology, 2001, 143, 59-70.	1.0	15
46	An integrated law of the wall for hydrodynamically transitional flow over plane beds. Sedimentary Geology, 2004, 163, 311-321.	1.0	15
47	Oroclinal bending of the Juan Fernández Ridge suggested by geohistory analysis of the BahÃa Inglesa Formation, north-central Chile. Sedimentary Geology, 2016, 333, 32-49.	1.0	15
48	The analysis of termite hills to locate uranium mineralization in the Karoo Basin of South Africa. Journal of Geochemical Exploration, 1991, 41, 341-347.	1.5	14
49	Comparison of Sphericity Indices as Related to the Hydraulic Equivalence of Settling Grains. Journal of Sedimentary Research, 1997, Vol. 67, .	0.8	14
50	Seasonal sediment transport pathways in Lirquen Harbor, Chile, as inferred from grain-size trends. Investigaciones Marinas, 2002, 30, 3.	0.1	13
51	Application of the Hofmann shape entropy to determine the settling velocity of irregular, semi-ellipsoidal grains. Sedimentary Geology, 2002, 149, 237-243.	1.0	13
52	Wave friction factor as related to the Shields parameter for steady currents. Sedimentary Geology, 2003, 155, 37-43.	1.0	13
53	A function to determine wavelength from deep into shallow water based on the length of the cnoidal wave at breaking. Coastal Engineering, 2007, 54, 770-774.	1.7	13
54	Stratigraphy, sedimentology, and geothermal reservoir potential of the volcaniclastic Cura-MallÃn succession at Lonquimay, Chile. Journal of South American Earth Sciences, 2017, 77, 1-20.	0.6	13

#	Article	IF	CITATIONS
55	Tectonic controls on the Maastrichtian-Danian transgression in the Magallanes-Austral foreland basin (Chile): Implications for the growth of the Southern Patagonian Andes. Sedimentary Geology, 2020, 403, 105645.	1.0	13
56	Characteristics of developing waves as a function of atmospheric conditions, water properties, fetch and duration. Coastal Engineering, 2009, 56, 479-483.	1.7	12
57	Preservation of beach ridges due to pedogenic calcrete development in the Tongoy palaeobay, North-Central Chile. Geomorphology, 2011, 132, 234-248.	1.1	12
58	Development of a Pleistocene calcrete over a sequence of marine terraces at Tongoy (north-central) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf 5

59	Paleocurrent analysis using Lotus 1-2-3. Computers and Geosciences, 1991, 17, 1465-1468.	2.0	10
60	Heartbeat of a mountain: diagnosing the age of depositional events in the Karoo (Gondwana) Basin from the pulse of the Cape Orogen. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1995, 84, 626-635.	1.3	10
61	Relationship between aerodynamic entrainment threshold and hydrodynamic settling velocity of particles. Sedimentary Geology, 1997, 109, 199-205.	1.0	10
62	Evolution of the Great Tehuelche Paleolake in the Torres del Paine National Park of Chilean Patagonia during the Last Glacial Maximum and Holocene. Andean Geology, 2012, 39, .	0.2	10
63	An Excelâ,,¢-VBA programme for the analysis of current velocity profiles. Computers and Geosciences, 2004, 30, 867-879.	2.0	9
64	Depositional environment of Stelloglyphus llicoensis isp. nov.: a new radial trace fossil from the Neogene Ranquil Formation, south-central Chile. Andean Geology, 2008, 35, .	0.5	9
65	An Excel program for computing the dynamic properties of particles in Newtonian fluids. Computers and Geosciences, 1997, 23, 671-675.	2.0	8
66	Sediment entrainment under fully developed waves as a function of water depth, boundary layer thickness, bottom slope and roughness. Sedimentary Geology, 2010, 223, 143-149.	1.0	8
67	Biostratigraphic evidence for dramatic Holocene uplift of Robinson Crusoe Island, Juan Fernández Ridge, SE Pacific Ocean. Biogeosciences, 2015, 12, 1993-2001.	1.3	8
68	Sedimentary processes on a Gilbert-type delta in Lake Llanquihue, southern Chile. Andean Geology, 2005, 32, .	0.5	8
69	Evidence for an Early-Middle Miocene age of the Navidad Formation (central Chile): Paleontological, paleoclimatic and tectonic implications. Andean Geology, 2013, 40, .	0.2	8
70	A rapid method to determine the critical shear stress for sphere entrainment under unidirectional fluid flow. Sedimentary Geology, 1991, 75, 1-3.	1.0	7
71	Monoclines and palaeochannels: evidence for syntectonic sedimentation in the Beaufort Group of the Karoo basin, South Africa. Journal of African Earth Sciences, 1994, 18, 219-226.	0.9	7
72	Profiles of fully developed (Airy) waves in different water depths. Coastal Engineering, 2008, 55, 701-703.	1.7	7

58

#	Article	IF	CITATIONS
73	Stratigraphic Implications of Latest Middle Miocene to Earliest Late Miocene Diatoms in the Navidad Formation at Lo Abarca, Central Chile (33° 30'S). Ameghiniana, 2010, 47, 527-533.	0.3	7
74	Factors controlling alpine glaciations in the Sierra Baguales Mountain Range of southern Patagonia (50º S), inferred from the morphometric analysis of glacial cirques. Andean Geology, 2018, 45, 357.	0.2	7
75	The Angular Deviation of Paleocurrent Directions as Applied to the Calculation of Channel Sinuosities. Journal of Sedimentary Research, 1994, Vol. 64A, .	0.8	6
76	Estimation of Channel Sinuosity from Paleocurrent Data: A Method Using Fractal Geometry: Discussion. Journal of Sedimentary Research, 2001, 71, 1029-1030.	0.8	6
77	WAVECALC: an Excel-VBA spreadsheet to model the characteristics of fully developed waves and their influence on bottom sediments in different water depths. Geo-Marine Letters, 2010, 30, 549-560.	0.5	6
78	Fall velocity of multi-shaped clasts. Journal of Volcanology and Geothermal Research, 2014, 289, 130-139.	0.8	6
79	Persistence of topographic features as a result of non-tectonic processes. Sedimentary Geology, 1994, 89, 33-42.	1.0	5
80	Spreadsheet procedure for modified first-order embedded markov analysis of cyclicity in sediments. Computers and Geosciences, 1994, 20, 17-22.	2.0	5
81	Heartbeat of a mountain: diagnosing the age of depositional events in the Karoo (Gondwana) Basin from the pulse of the Cape Orogen. Geologische Rundschau: Zeitschrift Fur Allgemeine Geologie, 1995, 84, 626.	1.3	5
82	Depósitos burdigalianos de la Formación Santa Cruz en Sierra Baguales, Cuenca Austral (Magallanes): Edad, ambiente de deposición y vertebrados fósiles Andean Geology, 2013, 40, .	0.2	5
83	Aerodynamic and Geometric Diameter of Airborne Particles: Discussion. Journal of Sedimentary Research, 2002, 72, 441-442.	0.8	4
84	Comments on "Turbulent boundary layer shear flows as an approximation of base surges at Campi Flegrei (Southern Italy), by Dellino et al. (2004)― Journal of Volcanology and Geothermal Research, 2005, 141, 331-332.	0.8	4
85	A unified criterion for initiation of sediment motion and inception of sheet flow under water waves – discussion. Sedimentology, 2007, 54, 1447-1448.	1.6	4
86	Estacionalidad de la erosión y el transporte eólico de partÃculas en el desierto costero de Atacama, Chile (23°S). Andean Geology, 2009, 36, .	0.2	4
87	A spreadsheet model for integrating stratigraphic and lithofacies maps. Computers and Geosciences, 1991, 17, 1469-1472.	2.0	3
88	Palaeogeographic reconstruction of sandstones using weighted mean grain-size maps, with examples from the Karoo Basin (South Africa) and the Sydney Basin (Australia). Sedimentary Geology, 1992, 81, 173-180.	1.0	3
89	Behavior of spherical grains in fluids: a convenient spreadsheet template for engineers and sedimentologists. Computers and Geosciences, 1992, 18, 1255-1257.	2.0	3
90	A strategy for uranium exploration in the Permo-Triassic Beaufort Group of the main Karoo basin, South Africa. Journal of African Earth Sciences, 1994, 18, 245-253.	0.9	3

#	Article	IF	CITATIONS
91	Determination of Drag Coefficients in Measuring Particle Diameters: Discussion. Journal of Sedimentary Research, 2005, 75, 520-521.	0.8	3
92	Structure and depositional processes of a gravelly tsunami deposit in a shallow marine setting: Lower Cretaceous Miyako Group, Japan—discussion. Sedimentary Geology, 2007, 201, 485-487.	1.0	3
93	A simple method to determine breaker height and depth for different wave height/length ratios and sea floor slopes — Reply to discussion by M.C. Haller and P.C. Catalan. Coastal Engineering, 2008, 55, 185-188.	1.7	3
94	First record of Elasmosaurid Plesiosaurs (Sauropterygia: Plesiosauria) in upper levels of the Dorotea Formation, Late Cretaceous (Maastrichtian), Puerto Natales, Chilean Patagonia. Andean Geology, 2009, 36, .	0.2	3
95	Wave friction factor rediscovered. Geo-Marine Letters, 2012, 32, 29-37.	0.5	3
96	Impacts, Tillites, and the Breakup of Gondwanaland: A Second Discussion. Journal of Geology, 1994, 102, 483-485.	0.7	3
97	Depositos estuarinos en la Formacion Rio Baguales (Chattiano-Aquitaniano), Provincia de Magallanes, Chile Andean Geology, 2010, 37, .	0.2	3
98	A comparison of velocity profiles in unidirectional currents and the wave boundary layer: Implications for sediment entrainment. Sedimentary Geology, 2010, 232, 84-90.	1.0	2
99	An Oligocene microthermal forest dominated by Nothofagus in Sierra Baguales, Chilean Patagonia: Response to global cooling and tectonic events. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 528, 1-13.	1.0	2
100	Estacionalidad de la erosion y el transporte eolico de particulas en el desierto costero de Atacama, Chile (23°S) Andean Geology, 2009, 36, .	0.2	2
101	The use of trend surfaces in palaeoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 111, 185-190.	1.0	1
102	Palaeogeographic reconstruction using composite maps, with case studies from three continents. Palaeogeography, Palaeoclimatology, Palaeoecology, 1997, 131, 51-63.	1.0	1
103	Estimating palaeowind strength from beach deposits - Discussion. Sedimentology, 2004, 51, 669-670.	1.6	1
104	Le Roux, J.P., 2001. A simple method to predict the threshold of particle transport under oscillatory waves. Sedimentary Geology 143 (2001): 59–70—Reply to discussion. Sedimentary Geology, 2004, 163, 319-322.	1.0	1
105	A function to determine wavelength from deep into shallow water based on the length of the cnoidal wave at breaking—Reply to discussion by T.S. Hedges. Coastal Engineering, 2009, 56, 96-97.	1.7	1
106	The Permo-Triassic Uranium Deposits of Gondwanaland. Geophysical Monograph Series, 0, , 139-146.	0.1	1
107	Reply to Comment of Encinas et al. (2014) on: â€~Evidence for an Early-Middle Miocene age of the Navidad Formation (central Chile): Paleontological, climatic and tectonic implications' of Guti©rrez et al. (2013, Andean Geology 40 (1): 66-78) Andean Geology, 2014, 41, .	0.2	1
108	Entrainment threshold of sand- to granule-sized sediments under waves. Sedimentary Geology, 2015, 322, 63-66.	1.0	1

#	Article	IF	CITATIONS
109	Relict glacial landscape in the Sierra Baguales Mountain Range (50°-51° S): evidence of glaciation dynamics and types in the eastern foothills of the southern Patagonian Andes. Journal of Mountain Science, 2017, 14, 282-295.	0.8	1
110	Reply to Comment of Finger et al. (2013) on: â€~Evidence for an Early-Middle Miocene age of the Navidad Formation (central Chile): Paleontological, paleoclimatic and tectonic implications' of Gutiérrez et al. (2013, Andean Geology 40 (1): 66-78). Andean Geology, 2013, 40, .	0.2	1
111	Mesozoic sedimentation on an isolated platform at the eastern entrance to the Strait of Magellan, Tierra del Fuego (Chile). Andean Geology, 2003, 30, .	0.5	1
112	Retort to response by Haller and Catalán. Coastal Engineering, 2008, 55, 823-824.	1.7	0
113	Discussion of "Comparison of Settling-Velocity-based Formulas for Threshold of Sediment Motion―by NS. Cheng. Journal of Hydraulic Engineering, 2009, 135, 626-628.	0.7	0
114	Formula for predicting bedload transport rate in oscillatory sheet flows. Coastal Engineering, 2009, 56, 377-379.	1.7	0
115	Analysis of Interfering Fully Developed, Colinear Deepwater Waves. International Journal of Oceanography, 2012, 2012, 1-8.	0.2	0
116	Un análisis crÃŧico de las evidencias presentadas para reinterpretar la mega-brecha de Hornitos como un dep³sito de flujo de masa generado por el colapso de un acantilado Andean Geology, 2015, 42, .	0.2	0