
Pankaj Trivedi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7263589/publications.pdf Version: 2024-02-01

ΟλΝΙΚΑΙ ΤΟΙνεοι

#	Article	lF	CITATIONS
1	High Spatial Resolution Fluorescence Imagery for Optimized Pest Management in a Huanglongbing-Infected Citrus Grove. Phytopathology, 2022, 112, 173-179.	2.2	3
2	Environmental filtering controls soil biodiversity in wet tropical ecosystems. Soil Biology and Biochemistry, 2022, 166, 108571.	8.8	3
3	Plant–microbiome interactions under a changing world: responses, consequences and perspectives. New Phytologist, 2022, 234, 1951-1959.	7.3	171
4	Limited legacy effects of extreme multiyear drought on carbon and nitrogen cycling in a mesic grassland. Elementa, 2022, 10, .	3.2	2
5	Labelâ€free proteomics approach reveals candidate proteins in rice (<i>Oryza sativa</i> L.) important for <scp>ACC</scp> deaminase producing bacteriaâ€mediated tolerance against salt stress. Environmental Microbiology, 2022, 24, 3612-3624.	3.8	21
6	The Proportion of Soil-Borne Fungal Pathogens Increases with Elevated Organic Carbon in Agricultural Soils. MSystems, 2022, 7, e0133721.	3.8	12
7	Water deficit affects interâ€kingdom microbial connections in plant rhizosphere. Environmental Microbiology, 2022, 24, 3722-3734.	3.8	21
8	Synthetic community improves crop performance and alters rhizosphere microbial communities. , 2022, 1, 118-131.		18
9	Quantification of insecticide spatial distribution within individual citrus trees and efficacy through Asian citrus psyllid reductions under different application methods. Pest Management Science, 2021, 77, 1748-1756.	3.4	6
10	Fertilization alters protistan consumers and parasites in cropâ€associated microbiomes. Environmental Microbiology, 2021, 23, 2169-2183.	3.8	52
11	Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytologist, 2021, 230, 2129-2147.	7.3	121
12	The Citrus Microbiome: From Structure and Function to Microbiome Engineering and Beyond. Phytobiomes Journal, 2021, 5, 249-262.	2.7	16
13	Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Science Advances, 2021, 7, .	10.3	83
14	ACC deaminase and indole acetic acid producing endophytic bacterial co-inoculation improves physiological traits of red pepper (Capsicum annum L.) under salt stress. Journal of Plant Physiology, 2021, 267, 153544.	3.5	27
15	Climatic vulnerabilities and ecological preferences of soil invertebrates across biomes. Molecular Ecology, 2020, 29, 752-761.	3.9	29
16	Ecoâ€holobiont: A new concept to identify drivers of hostâ€associated microorganisms. Environmental Microbiology, 2020, 22, 564-567.	3.8	51
17	Crop microbiome and sustainable agriculture. Nature Reviews Microbiology, 2020, 18, 601-602.	28.6	164
18	Plant–microbiome interactions: from community assembly to plant health. Nature Reviews Microbiology, 2020, 18, 607-621.	28.6	1,381

Pankaj Trivedi

#	Article	IF	CITATIONS
19	The influence of soil age on ecosystem structure and function across biomes. Nature Communications, 2020, 11, 4721.	12.8	47
20	Plant Microbiomes: Do Different Preservation Approaches and Primer Sets Alter Our Capacity to Assess Microbial Diversity and Community Composition?. Frontiers in Plant Science, 2020, 11, 993.	3.6	16
21	Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology and Evolution, 2020, 4, 210-220.	7.8	543
22	Global ecological predictors of the soil priming effect. Nature Communications, 2019, 10, 3481.	12.8	148
23	Climate change microbiology — problems and perspectives. Nature Reviews Microbiology, 2019, 17, 391-396.	28.6	130
24	Intransitive competition is common across five major taxonomic groups and is driven by productivity, competitive rank and functional traits. Journal of Ecology, 2018, 106, 852-864.	4.0	36
25	Field study reveals core plant microbiota and relative importance of their drivers. Environmental Microbiology, 2018, 20, 124-140.	3.8	255
26	Response to comment on "Climate legacies drive global soil carbon stocks in terrestrial ecosystem― Science Advances, 2018, 4, eaat1296.	10.3	1
27	The structure and function of the global citrus rhizosphere microbiome. Nature Communications, 2018, 9, 4894.	12.8	304
28	Yellow Canopy Syndrome in sugarcane is associated with shifts in the rhizosphere soil metagenome but not with overall soil microbial function. Soil Biology and Biochemistry, 2018, 125, 275-285.	8.8	9
29	Microbiome and the future for food and nutrient security. Microbial Biotechnology, 2017, 10, 50-53.	4.2	134
30	Microbial nitrous oxide emissions in dryland ecosystems: mechanisms, microbiome and mitigation. Environmental Microbiology, 2017, 19, 4808-4828.	3.8	40
31	â€~ <i>Candidatus</i> Liberibacter asiaticus' Encodes a Functional Salicylic Acid (SA) Hydroxylase That Degrades SA to Suppress Plant Defenses. Molecular Plant-Microbe Interactions, 2017, 30, 620-630.	2.6	108
32	Communication in the Phytobiome. Cell, 2017, 169, 587-596.	28.9	251
33	Soil aggregation and associated microbial communities modify the impact of agricultural management on carbon content. Environmental Microbiology, 2017, 19, 3070-3086.	3.8	180
34	Microbial richness and composition independently drive soil multifunctionality. Functional Ecology, 2017, 31, 2330-2343.	3.6	126
35	Tiny Microbes, Big Yields: enhancing food crop production with biological solutions. Microbial Biotechnology, 2017, 10, 999-1003.	4.2	119
36	Response of Soil Properties and Microbial Communities to Agriculture: Implications for Primary Productivity and Soil Health Indicators. Frontiers in Plant Science, 2016, 7, 990.	3.6	231

Pankaj Trivedi

#	Article	IF	CITATIONS
37	Harnessing Host-Vector Microbiome for Sustainable Plant Disease Management of Phloem-Limited Bacteria. Frontiers in Plant Science, 2016, 7, 1423.	3.6	46
38	Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing. Phytopathology, 2016, 106, 37-46.	2.2	67
39	Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME Journal, 2016, 10, 2593-2604.	9.8	324
40	Host immune responses accelerate pathogen evolution. ISME Journal, 2014, 8, 727-731.	9.8	22
41	Citrus Huanglongbing: A Newly Relevant Disease Presents Unprecedented Challenges. Phytopathology, 2013, 103, 652-665.	2.2	290
42	Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology, 2013, 21, 641-651.	7.7	429
43	Huanglongbing alters the structure and functional diversity of microbial communities associated with citrus rhizosphere. ISME Journal, 2012, 6, 363-383.	9.8	162
44	Isolation and Characterization of Beneficial Bacteria Associated with Citrus Roots in Florida. Microbial Ecology, 2011, 62, 324-336.	2.8	122
45	Huanglongbing, a Systemic Disease, Restructures the Bacterial Community Associated with Citrus Roots. Applied and Environmental Microbiology, 2010, 76, 3427-3436.	3.1	101
46	Bacterial Diversity Analysis of Huanglongbing Pathogen-Infected Citrus, Using PhyloChip Arrays and 16S rRNA Gene Clone Library Sequencing. Applied and Environmental Microbiology, 2009, 75, 1566-1574.	3.1	125