Nadja C Bigall

List of Publications by Citations

Source: https://exaly.com/author-pdf/7262574/nadja-c-bigall-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

60 3,746 31 95 h-index g-index citations papers 116 8.5 4,198 5.27 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
95	Reversible tunability of the near-infrared valence band plasmon resonance in Cu(2-x)Se nanocrystals. <i>Journal of the American Chemical Society</i> , 2011 , 133, 11175-80	16.4	375
94	Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. <i>Nano Letters</i> , 2007 , 7, 2422-7	11.5	369
93	Monodisperse platinum nanospheres with adjustable diameters from 10 to 100 nm: synthesis and distinct optical properties. <i>Nano Letters</i> , 2008 , 8, 4588-92	11.5	291
92	Quantum-dot-based photoelectrochemical sensors for chemical and biological detection. <i>ACS Applied Materials & Discourse (Materials & Discourse)</i> , 100 June 14	9.5	273
91	Noble metal aerogels-synthesis, characterization, and application as electrocatalysts. <i>Accounts of Chemical Research</i> , 2015 , 48, 154-62	24.3	233
90	Hydrogels and aerogels from noble metal nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 9731-4	16.4	223
89	Multifunctional nanobeads based on quantum dots and magnetic nanoparticles: synthesis and cancer cell targeting and sorting. ACS Nano, 2011, 5, 1109-21	16.7	157
88	Fluorescent, magnetic and plasmonic⊞ybrid multifunctional colloidal nano objects. <i>Nano Today</i> , 2012 , 7, 282-296	17.9	149
87	Real-time magnetic resonance imaging and quantification of lipoprotein metabolism in vivo using nanocrystals. <i>Nature Nanotechnology</i> , 2009 , 4, 193-201	28.7	149
86	Fungal templates for noble-metal nanoparticles and their application in catalysis. <i>Angewandte Chemie - International Edition</i> , 2008 , 47, 7876-9	16.4	97
85	Versatile Aerogel Fabrication by Freezing and Subsequent Freeze-Drying of Colloidal Nanoparticle Solutions. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 1200-3	16.4	76
84	Comparative Study of MIL-96(Al) as Continuous Metal-Organic Frameworks Layer and Mixed-Matrix Membrane. <i>ACS Applied Materials & Discourse Membrane</i> , 100 (2016) 8, 7536-44	9.5	65
83	Arrays of Inorganic Nanodots and Nanowires Using Nanotemplates Based on Switchable Block Copolymer Supramolecular Assemblies. <i>Advanced Functional Materials</i> , 2009 , 19, 2805-2811	15.6	61
82	Aerogels from CdSe/CdS Nanorods with Ultra-long Exciton Lifetimes and High Fluorescence Quantum Yields. <i>Advanced Materials</i> , 2015 , 27, 6152-6	24	57
81	Site-Selective Noble Metal Growth on CdSe Nanoplatelets. <i>Chemistry of Materials</i> , 2015 , 27, 3159-3166	9.6	53
80	Synthesis of noble metal nanoparticles and their non-ordered superstructures. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2010 , 368, 1385-404	3	53
79	Self-Assembly of TGA-Capped CdTe Nanocrystals into Three-Dimensional Luminescent Nanostructures. <i>Chemistry of Materials</i> , 2010 , 22, 2309-2314	9.6	52

(2010-2019)

78	Metal-Organic Framework Co-MOF-74-Based Host-Guest Composites for Resistive Gas Sensing. <i>ACS Applied Materials & Applied & Applied Materials & Applied & Ap</i>	9.5	51
77	Mixed Aerogels from Au and CdTe Nanoparticles. <i>Advanced Functional Materials</i> , 2013 , 23, 1903-1911	15.6	50
76	Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles. Journal of Inorganic Biochemistry, 2015 , 153, 334-338	4.2	48
75	Colloidal Ordered Assemblies in a Polymer Shell Novel Type of Magnetic Nanobeads for Theranostic Applications. <i>Chemistry of Materials</i> , 2013 , 25, 1055-1062	9.6	47
74	Nitrogen Doping Improves the Immobilization and Catalytic Effects of Co9S8 in Li-S Batteries. <i>Advanced Functional Materials</i> , 2020 , 30, 2002462	15.6	46
73	Porous Aerogels from Shape-Controlled Metal Nanoparticles Directly from Nonpolar Colloidal Solution. <i>Chemistry of Materials</i> , 2017 , 29, 9208-9217	9.6	44
72	A Step-Wise Approach for Dual Nanoparticle Patterning via Block Copolymer Self-Assembly. <i>Advanced Functional Materials</i> , 2013 , 23, 483-490	15.6	43
71	Highly ordered palladium nanodots and nanowires from switchable block copolymer thin films. <i>Nanotechnology</i> , 2009 , 20, 415302	3.4	42
70	Magnetic nanocarriers with tunable pH dependence for controlled loading and release of cationic and anionic payloads. <i>Advanced Materials</i> , 2011 , 23, 5645-50	24	40
69	Synthesis of Ternary and Quaternary Au and Pt Decorated CdSe/CdS Heteronanoplatelets with Controllable Morphology. <i>Advanced Functional Materials</i> , 2017 , 27, 1604685	15.6	39
68	Photoluminescent Aerogels from Quantum Wells. <i>Chemistry of Materials</i> , 2016 , 28, 2089-2099	9.6	33
67	Hexagonally ordered arrays of metallic nanodots from thin films of functional block copolymers. <i>Polymer</i> , 2010 , 51, 2661-2667	3.9	33
66	Phase transfer of 1- and 2-dimensional Cd-based nanocrystals. <i>Nanoscale</i> , 2015 , 7, 19300-9	7.7	31
65	High-Resolution Metal Nanopatterning by Means of Switchable Block Copolymer Templates. <i>ACS Applied Materials & Applied & Appl</i>	9.5	31
64	LMediated Green Synthesis of Silver Nanoparticles Exhibiting Antioxidant and Anticancer Activities. <i>Nanomaterials</i> , 2021 , 11,	5.4	23
63	Control over Structure and Properties in Nanocrystal Aerogels at the Nano-, Micro-, and Macroscale. <i>Accounts of Chemical Research</i> , 2020 , 53, 2414-2424	24.3	22
62	Nanoplatelet cryoaerogels with potential application in photoelectrochemical sensing. <i>Physical Chemistry Chemical Physics</i> , 2019 , 21, 9002-9012	3.6	21
61	Fabrication of two-dimensional Au@FePt core-shell nanoparticle arrays by photochemical metal deposition. <i>Applied Physics Letters</i> , 2010 , 96, 183111	3.4	19

60	A Versatile Route to Assemble Semiconductor Nanoparticles into Functional Aerogels by Means of Trivalent Cations. <i>Small</i> , 2020 , 16, e1906934	11	17
59	Spectroelectrochemical Investigation of the Charge Carrier Kinetics of Gold-Decorated Cadmium Chalcogenide Nanorods. <i>ChemElectroChem</i> , 2018 , 5, 175-186	4.3	16
58	Patterning of Nanoparticle-Based Aerogels and Xerogels by Inkjet Printing. <i>Small</i> , 2019 , 15, e1902186	11	16
57	Catalytic Properties of Cryogelated Noble Metal Aerogels. <i>Zeitschrift Fur Physikalische Chemie</i> , 2017 , 231,	3.1	14
56	Fractal growth of ZrO2 nanoparticles induced by synthesis conditions. <i>CrystEngComm</i> , 2016 , 18, 8396-8	49.5	14
55	Hollow Iron Oxide Nanoparticles in Polymer Nanobeads as MRI Contrast Agents. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 6246-6253	3.8	13
54	Polyacrylonitrile (PAN) based electrospun carbon nanofibers (ECNFs): Probing the synergistic effects of creep assisted stabilization and CNTs addition on graphitization and low dimensional electrical transport. <i>Carbon</i> , 2021 , 172, 283-295	10.4	13
53	Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties. <i>Zeitschrift Fur Physikalische Chemie</i> , 2018 , 232, 1675-1689	3.1	12
52	Tailoring Composition and Material Distribution in Multicomponent Cryoaerogels for Application in Photocatalysis. <i>ACS Applied Nano Materials</i> , 2018 , 1, 6123-6130	5.6	10
51	Monodisperse Molybdenum Nanoparticles as Highly Efficient Electrocatalysts for Li-S Batteries. <i>ACS Nano</i> , 2021 , 15, 15047-15056	16.7	10
50	Emission color-tunable oxazol(in)yl-substituted excited-state intramolecular proton transfer (ESIPT)-based luminophores. <i>Chemical Communications</i> , 2020 , 56, 15430-15433	5.8	9
49	Cryoaerogels and Cryohydrogels as Efficient Electrocatalysts. <i>Small</i> , 2021 , 17, e2007908	11	9
48	Nanocrystal Aerogels with Coupled or Decoupled Building Blocks. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 7804-7810	6.4	9
47	Preconcentration and Detection of Gefitinib Anti-Cancer Drug Traces from Water and Human Plasma Samples by Means of Magnetic Nanoparticles. <i>Nanomaterials</i> , 2020 , 10,	5.4	8
46	Reversible cation exchange on macroscopic CdSe/CdS and CdS nanorod based gel networks. <i>Nanoscale</i> , 2020 , 12, 5038-5047	7.7	8
45	Low Threshold Room Temperature Amplified Spontaneous Emission in 0D, 1D and 2D Quantum Confined Systems. <i>Scientific Reports</i> , 2018 , 8, 3962	4.9	8
44	Inkjet Printing of Aqueous Photoluminescent CdSe/CdS Nanorods on Solid Substrates. <i>Chemie-Ingenieur-Technik</i> , 2017 , 89, 807-813	0.8	8
43	Methanol-to-Olefins in a Membrane Reactor with in situ Steam Removal - The Decisive Role of Coking. ChemCatChem, 2020 , 12, 273-280	5.2	8

(2013-2016)

42	Universelle Methode zur Herstellung von Aerogelen aus kolloidalen Nanopartikell\u00ddungen durch Einfrieren und anschlie\u00e4ndes Gefriertrocknen. <i>Angewandte Chemie</i> , 2016 , 128, 1217-1221	3.6	8
41	A Bio-Chemosynthetic Approach to Superparamagnetic Iron Oxide-Ansamitocin Conjugates for Use in Magnetic Drug Targeting. <i>Chemistry - A European Journal</i> , 2017 , 23, 2265-2270	4.8	7
40	Revealing the Correlation of the Electrochemical Properties and the Hydration of Inkjet-Printed CdSe/CdS Semiconductor Gels. <i>Langmuir</i> , 2020 , 36, 4757-4765	4	7
39	Versatile route to core-shell reinforced network nanostructures. <i>Nanoscale</i> , 2019 , 11, 15270-15278	7.7	7
38	CdS crown growth on CdSe nanoplatelets: core shape matters. <i>Nanoscale Advances</i> , 2020 , 2, 4604-4614	5.1	7
37	Chloride Ion Mediated Synthesis of Metal/Semiconductor Hybrid Nanocrystals. <i>Small</i> , 2016 , 12, 2588-94	11	7
36	From a 1,2-azaborinine to large BN-PAHs via electrophilic cyclization: synthesis, characterization and promising optical properties. <i>Organic Chemistry Frontiers</i> , 2021 , 8, 10-17	5.2	7
35	Electronic transport in CdSe nanoplatelet based polymer fibres. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 10916-10923	7.1	7
34	Enhanced Nucleation of Vortices in Soft Magnetic Materials Prepared by Silica Nanosphere Lithography. <i>Advanced Functional Materials</i> , 2011 , 21, 891-896	15.6	6
33	Capacitive behavior of activated carbons obtained from coffee husk <i>RSC Advances</i> , 2020 , 10, 38097-38	130%	6
32	Structural Diversity in Cryoaerogel Synthesis. <i>Langmuir</i> , 2021 , 37, 5109-5117	4	6
31	Engineering of multifunctional nanofluids for insulation systems of high voltage apparatus 2016,		6
30	Growth of Cu2⊠SeሺuPt and Cu1.1S P t Hybrid Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 21925-21931	3.8	5
29	Investigations on the Separation of Platinum Nanoparticles With Magnetic Beads. <i>IEEE Transactions on Magnetics</i> , 2014 , 50, 1-4	2	5
28	Tungsten Nanoparticles Accelerate Polysulfides Conversion: A Viable Route toward Stable Room-Temperature Sodium-Sulfur Batteries <i>Advanced Science</i> , 2022 , e2105544	13.6	5
27	Revealing the Effect of Nanoscopic Design on the Charge Carrier Separation Processes in Semiconductor-Metal Nanoparticle Gel Networks. <i>Advanced Optical Materials</i> ,2101712	8.1	5
26	Spatial Extent of Fluorescence Quenching in Mixed Semiconductor Metal Nanoparticle Gel Networks. <i>Advanced Functional Materials</i> , 2021 , 31, 2101628	15.6	5
25	Metal Nanoparticle Aerogels and Their Applications. ECS Transactions, 2013, 45, 149-154	1	4

24	One-Step Formation of Hybrid Nanocrystal Gels: Deposition of Metal Domains on CdSe/CdS Nanorod and Nanoplatelet Networks. <i>Advanced Optical Materials</i> , 2021 , 9, 2100291	8.1	4
23	Aerogelation of Polymer-Coated Photoluminescent, Plasmonic, and Magnetic Nanoparticles for Biosensing Applications. <i>ACS Applied Nano Materials</i> , 2021 , 4, 6678-6688	5.6	4
22	Nanosized Matter. Zeitschrift Fur Physikalische Chemie, 2018, 233, 1-2	3.1	4
21	Interparticle Interaction Matters: Charge Carrier Dynamics in Hybrid Semiconductor Metal Cryoaerogels. <i>Advanced Materials Interfaces</i> , 2200055	4.6	4
20	Ordered and Nonordered Porous Superstructures from Metal Nanoparticles 2012 , 339-359		3
19	Substitution Effect on 2-(Oxazolinyl)-phenols and 1,2,5-ChalcogenadiazoleAnnulated Derivatives: Emission-Color-Tunable, Minimalistic Excited-State Intramolecular Proton Transfer (ESIPT)-Based Luminophores. <i>Journal of Organic Chemistry</i> , 2021 , 86, 14333-14355	4.2	3
18	Photoluminescence Lifetime Based Investigations of Linker Mediated Electronic Connectivity Between Substrate and Nanoparticle. <i>Frontiers in Chemistry</i> , 2019 , 7, 207	5	2
17	Magnetite nanofluid as alternative for conventional insulating liquids 2017,		2
16	Inkjet Printing: Patterning of Nanoparticle-Based Aerogels and Xerogels by Inkjet Printing (Small 39/2019). <i>Small</i> , 2019 , 15, 1970212	11	1
15	Noble-Metal Nanorod Cryoaerogels with Electrocatalytically Active Surface Sites. <i>ACS Applied Materials & Acs Applied & Acs Appl</i>	9.5	1
14	Pd-Doped Cellulose Carbon Aerogels for Energy Storage Applications. <i>Advanced Materials Interfaces</i> , 2021 , 8, 2100310	4.6	1
13	Synthesis of InP/ZnS Nanocrystals and Phase Transfer by Hydrolysis of Ester. <i>Zeitschrift Fur Physikalische Chemie</i> , 2018 , 233, 55-67	3.1	1
12	One-Step Formation of Hybrid Nanocrystal Gels: Deposition of Metal Domains on CdSe/CdS Nanorod and Nanoplatelet Networks (Advanced Optical Materials 17/2021). <i>Advanced Optical Materials</i> , 2021 , 9, 2170067	8.1	1
11	BN-Substitution in Dithienylpyrenes Prevents Excimer Formation in Solution and in the Solid State <i>Journal of Physical Chemistry C</i> , 2022 , 126, 4563-4576	3.8	1
10	Semiconductor Nanoparticles: A Versatile Route to Assemble Semiconductor Nanoparticles into Functional Aerogels by Means of Trivalent Cations (Small 16/2020). <i>Small</i> , 2020 , 16, 2070089	11	O
9	Versatile Route for Multifunctional Aerogels Including Flaxseed Mucilage and Nanocrystals <i>Macromolecular Rapid Communications</i> , 2022 , e2100794	4.8	O
8	Econjugated stannole copolymers synthesised by a tin-selective Stille cross-coupling reaction. <i>Materials Advances</i> , 2021 , 2, 3282-3293	3.3	0
7	Interparticle Distance Variation in Semiconductor Nanoplatelet Stacks. <i>Advanced Functional Materials</i> ,2112621	15.6	0

LIST OF PUBLICATIONS

6	Aerogels: Aerogels from CdSe/CdS Nanorods with Ultra-long Exciton Lifetimes and High Fluorescence Quantum Yields (Adv. Mater. 40/2015). <i>Advanced Materials</i> , 2015 , 27, 6151	24
5	Temperature-Sensitive Localized Surface Plasmon Resonance of ENiS Nanoparticles <i>Journal of Physical Chemistry C</i> , 2021 , 125, 26635-26644	3.8
4	Comparison of Water-Isopropanol Replacement and Lyophilisation for Hydration Stop of Cementitious Suspensions. <i>RILEM Bookseries</i> , 2020 , 610-618	0.5
3	Fundamentals of Nanotechnology 2017 , 1-43	
2	Congratulations to Alexander Eychm[ler. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1263-1266	3.1