Nizar N Jarjour

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7262458/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neuroimaging and biomarker evidence of neurodegeneration in asthma. Journal of Allergy and Clinical Immunology, 2022, 149, 589-598.e6.	2.9	24
2	The Precision Interventions for Severe and/or Exacerbation-Prone (PrecISE) Asthma Network: An overview of Network organization, procedures, and interventions. Journal of Allergy and Clinical Immunology, 2022, 149, 488-516.e9.	2.9	24
3	Mucus Plugs in Asthma at CT Associated with Regional Ventilation Defects at ³ He MRI. Radiology, 2022, 303, 184-190.	7.3	22
4	Quantitative CT Characteristics of Cluster Phenotypes in the Severe Asthma Research Program Cohorts. Radiology, 2022, 304, 450-459.	7.3	3
5	Segmental Bronchial Allergen Challenge Elicits Distinct Metabolic Phenotypes in Allergic Asthma. Metabolites, 2022, 12, 381.	2.9	2
6	Increased RV:LV ratio on chest CT-angiogram in COVID-19 is a marker of adverse outcomes. Egyptian Heart Journal, 2022, 74, 37.	1.2	1
7	Airway fibrin formation cascade in allergic asthma exacerbation: implications for inflammation and remodeling. Clinical Proteomics, 2022, 19, 15.	2.1	3
8	Autophagy Protects against Eosinophil Cytolysis and Release of DNA. Cells, 2022, 11, 1821.	4.1	6
9	Responsiveness to Parenteral Corticosteroids and Lung Function Trajectory in Adults with Moderate-to-Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 841-852.	5.6	14
10	Observation and Quantification of Eosinophil Motility. Methods in Molecular Biology, 2021, 2241, 139-148.	0.9	0
11	Increased ILâ€6 and Potential ILâ€6 transâ€signalling in the airways after an allergen challenge. Clinical and Experimental Allergy, 2021, 51, 564-573.	2.9	9
12	Interleukin-1α Is a Critical Mediator of the Response of Human Bronchial Fibroblasts to Eosinophilic Inflammation. Cells, 2021, 10, 528.	4.1	6
13	Genetic and non-genetic factors affecting the expression of COVID-19-relevant genes in the large airway epithelium. Genome Medicine, 2021, 13, 66.	8.2	21
14	PrecISE: Precision Medicine in Severe Asthma: An adaptive platform trial with biomarker ascertainment. Journal of Allergy and Clinical Immunology, 2021, 147, 1594-1601.	2.9	27
15	Benefits of Airway Androgen Receptor Expression in Human Asthma. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 285-293.	5.6	26
16	Pharmacogenetic studies of long-acting beta agonist and inhaled corticosteroid responsiveness in randomised controlled trials of individuals of African descent with asthma. The Lancet Child and Adolescent Health, 2021, 5, 862-872.	5.6	10
17	Estimated Ventricular Size, Asthma Severity,Âand Exacerbations. Chest, 2020, 157, 258-267.	0.8	4
18	Investigation of the relationship between IL-6 and type 2 biomarkers in patients with severe asthma. Journal of Allergy and Clinical Immunology, 2020, 145, 430-433.	2.9	38

#	Article	IF	CITATIONS
19	Severe asthma during childhood and adolescence: AÂlongitudinal study. Journal of Allergy and Clinical Immunology, 2020, 145, 140-146.e9.	2.9	45
20	Development and initial validation of the Asthma Severity Scoring System (ASSESS). Journal of Allergy and Clinical Immunology, 2020, 145, 127-139.	2.9	19
21	Eosinophil cytolysis on Immunoglobulin G is associated with microtubule formation and suppression of rhoâ€associated protein kinase signalling. Clinical and Experimental Allergy, 2020, 50, 198-212.	2.9	11
22	Plasma P-Selectin Is Inversely Associated with Lung Function and Corticosteroid Responsiveness in Asthma. International Archives of Allergy and Immunology, 2020, 181, 879-887.	2.1	3
23	Evidence for Exacerbation-Prone Asthma and Predictive Biomarkers of Exacerbation Frequency. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 973-982.	5.6	105
24	<i>HSD3B1</i> genotype identifies glucocorticoid responsiveness in severe asthma. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2187-2193.	7.1	27
25	Ventilation defects on hyperpolarized helium-3 MRI in asthma are predictive of 2-year exacerbation frequency. Journal of Allergy and Clinical Immunology, 2020, 146, 831-839.e6.	2.9	29
26	Safety of repeated hyperpolarized helium 3 magnetic resonance imaging in pediatric asthma patients. Pediatric Radiology, 2020, 50, 646-655.	2.0	4
27	Club Cell TRPV4 Serves as a Damage Sensor Driving Lung Allergic Inflammation. Cell Host and Microbe, 2020, 27, 614-628.e6.	11.0	47
28	COVID-19–related Genes in Sputum Cells in Asthma. Relationship to Demographic Features and Corticosteroids. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 83-90.	5.6	370
29	Human airway epithelial cells express a functional ILâ€5 receptor. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2127-2130.	5.7	28
30	Clinical significance of the bronchodilator response in children with severe asthma. Pediatric Pulmonology, 2019, 54, 1694-1703.	2.0	10
31	BAL Cell Gene Expression in Severe Asthma Reveals Mechanisms of Severe Disease and Influences of Medications. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 837-856.	5.6	37
32	Extracellular DNA, Neutrophil Extracellular Traps, and Inflammasome Activation in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 1076-1085.	5.6	165
33	Differences in Particle Deposition Between Members of Imaging-Based Asthma Clusters. Journal of Aerosol Medicine and Pulmonary Drug Delivery, 2019, 32, 213-223.	1.4	21
34	Matrix Metalloproteinase-9-Dependent Release of IL-1 <i>β</i> by Human Eosinophils. Mediators of Inflammation, 2019, 2019, 1-11.	3.0	22
35	Compressive air trapping in asthma: effects of age, sex, and severity. Journal of Applied Physiology, 2019, 126, 1265-1271.	2.5	6
36	Unmet Needs in Severe Asthma Subtyping and Precision Medicine Trials. Bridging Clinical and Patient Perspectives. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 823-829.	5.6	31

#	Article	IF	CITATIONS
37	Systematic Approach to Asthma of Varying Severity. Clinics in Chest Medicine, 2019, 40, 59-70.	2.1	9
38	Racial disparities in asthma-related health care use in the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2019, 143, 2052-2061.	2.9	65
39	Refractory airway type 2 inflammation in a large subgroup of asthmatic patients treated with inhaled corticosteroids. Journal of Allergy and Clinical Immunology, 2019, 143, 104-113.e14.	2.9	135
40	Sialylation of MUC4β N-glycans by ST6GAL1 orchestrates human airway epithelial cell differentiation associated with type-2 inflammation. JCI Insight, 2019, 4, .	5.0	13
41	Mechanisms underlying fixed airflow obstruction and exacerbations. , 2019, , 82-92.		1
42	Structural and Functional Features on Quantitative Chest Computed Tomography in the Korean Asian versus the White American Healthy Non-Smokers. Korean Journal of Radiology, 2019, 20, 1236.	3.4	13
43	Pruning of the Pulmonary Vasculature in Asthma. The Severe Asthma Research Program (SARP) Cohort. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 39-50.	5.6	51
44	Lumen area change (Delta Lumen) between inspiratory and expiratory multidetector computed tomography as a measure of severe outcomes in asthmatic patients. Journal of Allergy and Clinical Immunology, 2018, 142, 1773-1780.e9.	2.9	13
45	Sputum cell IL-1 receptor expression level is a marker of airway neutrophilia and airflow obstruction in asthmatic patients. Journal of Allergy and Clinical Immunology, 2018, 142, 415-423.	2.9	31
46	Ventilation defect percent in helium-3 magnetic resonance imaging as a biomarker of severe outcomes in asthma. Journal of Allergy and Clinical Immunology, 2018, 141, 1140-1141.e4.	2.9	36
47	Proteomic and Phosphoproteomic Changes Induced by Prolonged Activation of Human Eosinophils with IL-3. Journal of Proteome Research, 2018, 17, 2102-2111.	3.7	11
48	Regional Heterogeneity of Lobar Ventilation in Asthma Using Hyperpolarized Helium-3 MRI. Academic Radiology, 2018, 25, 169-178.	2.5	29
49	Airway Epithelial Cell-Derived Colony Stimulating Factor-1 Promotes Allergen Sensitization. Immunity, 2018, 49, 275-287.e5.	14.3	57
50	Eosinophil-degranulation products drive a proinflammatory fibroblast phenotype. Journal of Allergy and Clinical Immunology, 2018, 142, 1360-1363.e3.	2.9	7
51	Neutrophil cytoplasts induce T _H 17 differentiation and skew inflammation toward neutrophilia in severe asthma. Science Immunology, 2018, 3, .	11.9	157
52	Effects of endogenous sex hormones on lung function and symptom control in adolescents with asthma. BMC Pulmonary Medicine, 2018, 18, 58.	2.0	74
53	Characterization of Siglec-8 Expression on Lavage Cells after Segmental Lung Allergen Challenge. International Archives of Allergy and Immunology, 2018, 177, 16-28.	2.1	21
54	Baseline Features of the Severe Asthma Research Program (SARP III) Cohort: Differences with Age. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 545-554.e4.	3.8	210

#	Article	IF	CITATIONS
55	Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. Journal of Clinical Investigation, 2018, 128, 997-1009.	8.2	337
56	Quantitative computed tomographic imaging–based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes. Journal of Allergy and Clinical Immunology, 2017, 140, 690-700.e8.	2.9	79
57	Epstein-Barr Virus–induced Gene 2 Mediates Allergen-induced Leukocyte Migration into Airways. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1576-1585.	5.6	24
58	Natural killer cell–mediated inflammation resolution is disabled in severe asthma. Science Immunology, 2017, 2, .	11.9	76
59	KIT Inhibition by Imatinib in Patients with Severe Refractory Asthma. New England Journal of Medicine, 2017, 376, 1911-1920.	27.0	159
60	Gene Expression Correlated with Severe Asthma Characteristics Reveals Heterogeneous Mechanisms of Severe Disease. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1449-1463.	5.6	130
61	Effects of Age and Disease Severity on Systemic Corticosteroid Responses in Asthma. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1439-1448.	5.6	87
62	Mepolizumab Attenuates Airway Eosinophil Numbers, but Not Their Functional Phenotype, in Asthma. American Journal of Respiratory and Critical Care Medicine, 2017, 196, 1385-1395.	5.6	103
63	Differentiation of quantitative CT imaging phenotypes in asthma versus COPD. BMJ Open Respiratory Research, 2017, 4, e000252.	3.0	30
64	A Systematic Approach to Evaluating Difficult to Control Asthma: A Little Goes a Long Way. Journal of Allergy and Clinical Immunology: in Practice, 2017, 5, 965-966.	3.8	1
65	Human eosinophil activin A synthesis and mRNA stabilization are induced by the combination of ILâ€3 plus TNF. Immunology and Cell Biology, 2016, 94, 701-708.	2.3	17
66	Redistribution of inhaled hyperpolarized ³ He gas during breath-hold differs by asthma severity. Journal of Applied Physiology, 2016, 120, 526-536.	2.5	19
67	The Peripheral Blood Eosinophil Proteome. Journal of Proteome Research, 2016, 15, 1524-1533.	3.7	79
68	Serum periostin is associated with type 2 immunity in severe asthma. Journal of Allergy and Clinical Immunology, 2016, 137, 1904-1907.e2.	2.9	34
69	Variability of blood eosinophil count as an asthma biomarker. Annals of Allergy, Asthma and Immunology, 2016, 117, 551-553.	1.0	32
70	The Asthma–Chronic Obstructive Pulmonary Disease Overlap Syndrome: A New Take on an Old Concept. Annals of the American Thoracic Society, 2016, 13, 1440-1442.	3.2	7
71	Association Between Insomnia and AsthmaÂBurden in the Severe Asthma Research Program (SARP) III. Chest, 2016, 150, 1242-1250.	0.8	51
72	Plasma interleukin-6 concentrations, metabolic dysfunction, and asthma severity: a cross-sectional analysis of two cohorts. Lancet Respiratory Medicine,the, 2016, 4, 574-584.	10.7	375

#	Article	IF	CITATIONS
73	Segmental allergen challenge increases levels of airway follistatin-like 1 in patients with asthma. Journal of Allergy and Clinical Immunology, 2016, 138, 596-599.e4.	2.9	15
74	Airway factor XIII associates with type 2 inflammation and airway obstruction in asthmatic patients. Journal of Allergy and Clinical Immunology, 2016, 137, 767-773.e6.	2.9	19
75	Obstructive Sleep Apnea Risk, Asthma Burden, and Lower Airway Inflammation in Adults in the Severe Asthma Research Program (SARP) II. Journal of Allergy and Clinical Immunology: in Practice, 2015, 3, 566-575.e1.	3.8	107
76	Discriminating sputum-eosinophilic asthma: Accuracy of cutoffs in blood eosinophil measurements versus a composite index, ELEN. Journal of Allergy and Clinical Immunology, 2015, 136, 812-814.e2.	2.9	26
77	Phenotype of asthmatics with increased airway <i>S</i> -nitrosoglutathione reductase activity. European Respiratory Journal, 2015, 45, 87-97.	6.7	26
78	Severity of virus-induced asthma symptoms isÂinversely related to resolution IFN-λ expression. Journal of Allergy and Clinical Immunology, 2015, 135, 1656-1659.e4.	2.9	4
79	Genetic variation in chitinase 3-like 1 (CHI3L1) contributes to asthma severity and airway expression of YKL-40. Journal of Allergy and Clinical Immunology, 2015, 136, 51-58.e10.	2.9	45
80	Future Research Directions in Asthma. An NHLBI Working Group Report. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 1366-1372.	5.6	84
81	IL-3 Maintains Activation of the p90S6K/RPS6 Pathway and Increases Translation in Human Eosinophils. Journal of Immunology, 2015, 195, 2529-2539.	0.8	36
82	Quantitative assessment of multiscale structural and functional alterations in asthmatic populations. Journal of Applied Physiology, 2015, 118, 1286-1298.	2.5	67
83	Clinical Implications of Having Reduced Mid Forced Expiratory Flow Rates (FEF25-75), Independently of FEV1, in Adult Patients with Asthma. PLoS ONE, 2015, 10, e0145476.	2.5	49
84	Longitudinal Changes in Airway Remodeling and Air Trapping in Severe Asthma. Academic Radiology, 2014, 21, 986-993.	2.5	40
85	Sputum neutrophil counts are associated with more severe asthma phenotypes using cluster analysis. Journal of Allergy and Clinical Immunology, 2014, 133, 1557-1563.e5.	2.9	488
86	Semaphorin 7A is expressed on airway eosinophils and upregulated by IL-5 family cytokines. Clinical Immunology, 2014, 150, 90-100.	3.2	54
87	Rhinovirus colocalizes with CD68- and CD11b-positive macrophages following experimental infection in humans. Journal of Allergy and Clinical Immunology, 2013, 132, 758-761.e3.	2.9	23
88	Safety of and Cellular Response to Segmental Bronchoprovocation in Allergic Asthma. PLoS ONE, 2013, 8, e51963.	2.5	11
89	Identification of Genes Expressed by Human Airway Eosinophils after an In Vivo Allergen Challenge. PLoS ONE, 2013, 8, e67560.	2.5	57
90	Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2012, 185, 356-362.	5.6	242

6

#	Article	IF	CITATIONS
91	Potent synergistic effect of IL-3 and TNF on matrix metalloproteinase 9 generation by human eosinophils. Cytokine, 2012, 58, 199-206.	3.2	35
92	Lower Airway Rhinovirus Burden and the Seasonal Risk of Asthma Exacerbation. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1007-1014.	5.6	99
93	Identification of Asthma Phenotypes Using Cluster Analysis in the Severe Asthma Research Program. American Journal of Respiratory and Critical Care Medicine, 2010, 181, 315-323.	5.6	1,820
94	The asthma index: A continuous variable to characterize exacerbations of asthma. Journal of Allergy and Clinical Immunology, 2008, 122, 838-840.	2.9	13
95	Evaluation of Structure-Function Relationships in Asthma using Multidetector CT and Hyperpolarized He-3 MRI. Academic Radiology, 2008, 15, 753-762.	2.5	139
96	Airway Lipoxin A ₄ Generation and Lipoxin A ₄ Receptor Expression Are Decreased in Severe Asthma. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 574-582.	5.6	215
97	Lung function in adults with stable but severe asthma: air trapping and incomplete reversal of obstruction with bronchodilation. Journal of Applied Physiology, 2008, 104, 394-403.	2.5	270
98	Characterization of the severe asthma phenotype by the National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Journal of Allergy and Clinical Immunology, 2007, 119, 405-413.	2.9	838
99	Control of airway inflammation maintained at a lower steroid dose with 100/50 μg of fluticasone propionate/salmeterol. Journal of Allergy and Clinical Immunology, 2006, 118, 44-52.	2.9	37
100	Increased Thrombin Activity after Allergen Challenge. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 373-377.	5.6	90
101	Enhanced Generation of Helper T Type 1 and 2 Chemokines in Allergen-induced Asthma. American Journal of Respiratory and Critical Care Medicine, 2004, 169, 1118-1124.	5.6	86
102	Decreased Expression of Membrane IL-5 Receptor α on Human Eosinophils: II. IL-5 Down-Modulates Its Receptor Via a Proteinase-Mediated Process. Journal of Immunology, 2002, 169, 6459-6466.	0.8	118
103	Decreased Expression of Membrane IL-5 Receptor α on Human Eosinophils: I. Loss of Membrane IL-5 Receptor α on Airway Eosinophils and Increased Soluble IL-5 Receptor α in the Airway After Allergen Challenge. Journal of Immunology, 2002, 169, 6452-6458.	0.8	169
104	Pathogenesis of asthma. Medical Clinics of North America, 2002, 86, 925-936.	2.5	27
105	Circadian Variation in Allergen and Nonspecific Bronchial Responsiveness in Asthma. Chronobiology International, 1999, 16, 631-639.	2.0	33
106	Increased Airway Inflammation with Segmental versus Aerosol Antigen Challenge. The American Review of Respiratory Disease, 1993, 147, 1465-1471.	2.9	95