Philip J Tofilon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7262084/publications.pdf

Version: 2024-02-01

687363 526287 1,320 30 13 27 citations h-index g-index papers 30 30 30 2365 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	CX-5461 induces radiosensitization through modification of the DNA damage response and not inhibition of RNA polymerase I. Scientific Reports, 2022, 12, 4059.	3.3	2
2	Abstract 6057: Mechanisms mediating the radioresistance of human glioma cells growing in the murine olfactory bulb. Cancer Research, 2022, 82, 6057-6057.	0.9	O
3	Inhibition of the Translation Initiation Factor eIF4A Enhances Tumor Cell Radiosensitivity. Molecular Cancer Therapeutics, 2022, 21, 1406-1414.	4.1	1
4	In Vitro Methods for the Study of Glioblastoma Stem-Like Cell Radiosensitivity. Methods in Molecular Biology, 2021, 2269, 37-47.	0.9	0
5	Detection of metabolic change in glioblastoma cells after radiotherapy using hyperpolarized ¹³ Câ€MRI. NMR in Biomedicine, 2021, 34, e4514.	2.8	6
6	The Radiosensitizing Effect of AZD0530 in Glioblastoma and Glioblastoma Stem-Like Cells. Molecular Cancer Therapeutics, 2021, 20, 1672-1679.	4.1	6
7	Bench to bedside radiosensitizer development strategy for newly diagnosed glioblastoma. Radiation Oncology, 2021, 16, 191.	2.7	6
8	Translation Initiation Machinery as a Tumor Selective Target for Radiosensitization. International Journal of Molecular Sciences, 2021, 22, 10664.	4.1	3
9	Detection of glioblastoma intratumor heterogeneity in radiosensitivity using patient-derived neurosphere cultures. Journal of Neuro-Oncology, 2020, 149, 383-390.	2.9	5
10	Improving Radiation Response in Glioblastoma Using ECO/siRNA Nanoparticles Targeting DNA Damage Repair. Cancers, 2020, 12, 3260.	3.7	7
11	Radiosensitizers in the temozolomide era for newly diagnosed glioblastoma. Neuro-Oncology Practice, 2020, 7, 268-276.	1.6	12
12	The Olfactory Bulb Provides a Radioresistant Niche for Glioblastoma Cells. International Journal of Radiation Oncology Biology Physics, 2020, 107, 194-201.	0.8	4
13	Radiation Drives the Evolution of Orthotopic Xenografts Initiated from Glioblastoma Stem–like Cells. Cancer Research, 2019, 79, 6032-6043.	0.9	14
14	The Quiescent Metabolic Phenotype of Glioma Stem Cells. , 2019, 12, 96-103.		6
15	Inhibition of the Histone H3K27 Demethylase UTX Enhances Tumor Cell Radiosensitivity. Molecular Cancer Therapeutics, 2018, 17, 1070-1078.	4.1	31
16	The DNA-PK Inhibitor VX-984 Enhances the Radiosensitivity of Glioblastoma Cells Grown <i>In Vitro</i> and as Orthotopic Xenografts. Molecular Cancer Therapeutics, 2018, 17, 1207-1216.	4.1	84
17	The XPO1 Inhibitor Selinexor Inhibits Translation and Enhances the Radiosensitivity of Glioblastoma Cells Grown <i>In Vitro</i> and <i>In Vivo</i> Molecular Cancer Therapeutics, 2018, 17, 1717-1726.	4.1	34
18	Radiation-induced alternative transcripts as detected in total and polysome-bound mRNA. Oncotarget, 2018, 9, 691-705.	1.8	6

#	Article	IF	CITATIONS
19	Radiation-induced translational control of gene expression. Translation, 2017, 5, e1265703.	2.9	10
20	Polysome Profiling Links Translational Control to the Radioresponse of Glioblastoma Stem-like Cells. Cancer Research, 2016, 76, 3078-3087.	0.9	23
21	FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells. Oncotarget, 2016, 7, 77365-77377.	1.8	55
22	Glioblastoma radiosensitization by pimozide. Translational Cancer Research, 2016, 5, S1029-S1032.	1.0	4
23	Coculture with astrocytes reduces the radiosensitivity of glioblastoma stemâ€ike cells and identifies additional targets for radiosensitization. Cancer Medicine, 2015, 4, 1705-1716.	2.8	42
24	A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma. International Journal of Radiation Oncology Biology Physics, 2015, 92, 986-992.	0.8	166
25	lonizing Radiation and Glioblastoma Exosomes: Implications in Tumor Biology and Cell Migration. Translational Oncology, 2013, 6, 638-IN6.	3.7	179
26	The Brain Microenvironment Preferentially Enhances the Radioresistance of CD133+ Glioblastoma Stem-like Cells. Neoplasia, 2012, 14, 150-158.	5.3	112
27	Microenvironmental Regulation of Glioblastoma Radioresponse. Clinical Cancer Research, 2010, 16, 6049-6059.	7.0	72
28	CD133+ Glioblastoma Stem-like Cells are Radiosensitive with a Defective DNA Damage Response Compared with Established Cell Lines. Clinical Cancer Research, 2009, 15, 5145-5153.	7.0	161
29	High throughput evaluation of gamma-H2AX. Radiation Oncology, 2009, 4, 31.	2.7	33
30	Physiologic Oxygen Concentration Enhances the Stem-Like Properties of CD133+ Human Glioblastoma Cells <i>In vitro</i>	3.4	236