Qing Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7262006/publications.pdf

Version: 2024-02-01

167	6,936	42	74
papers	citations	h-index	g-index
167	167	167	3193
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Hall-Petch relationship in Mg alloys: A review. Journal of Materials Science and Technology, 2018, 34, 248-256.	10.7	443
2	Microstructure and strengthening mechanisms in cold-drawn pearlitic steel wire. Acta Materialia, 2011, 59, 3422-3430.	7.9	275
3	The mechanism for the high dependence of the Hall-Petch slope for twinning/slip on texture in Mg alloys. Acta Materialia, 2017, 128, 313-326.	7.9	247
4	Strengthening and toughening of magnesium alloy by $\{10\hat{a}^212\}$ extension twins. Scripta Materialia, 2012, 66, 25-28.	5.2	214
5	Improving tensile and compressive properties of magnesium alloy plates by pre-cold rolling. Scripta Materialia, 2012, 66, 1061-1064.	5.2	209
6	The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy. Acta Materialia, 2018, 145, 437-450.	7.9	197
7	Tailoring the texture of magnesium alloy by twinning deformation to improve the rolling capability. Scripta Materialia, 2011, 64, 986-989.	5.2	168
8	Effect of crystal orientation on the mechanical properties and strain hardening behavior of magnesium alloy AZ31 during uniaxial compression. Materials Science & Department of the Materials: Properties, Microstructure and Processing, 2012, 534, 588-593.	5.6	167
9	Geometrically necessary boundaries and incidental dislocation boundaries formed during cold deformation. Scripta Metallurgica Et Materialia, 1995, 32, 1289-1295.	1.0	160
10	The natural aging and precipitation hardening behaviour of Al-Mg-Si-Cu alloys with different Mg/Si ratios and Cu additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 119-126.	5.6	139
11	Quantitative prediction of texture effect on Hall–Petch slope for magnesium alloys. Acta Materialia, 2019, 173, 142-152.	7.9	126
12	Understanding of variant selection and twin patterns in compressed Mg alloy sheets via combined analysis of Schmid factor and strain compatibility factor. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 609, 92-101.	5.6	124
13	Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2016, 662, 204-213.	5.6	115
14	Atomic Pd on Graphdiyne/Graphene Heterostructure as Efficient Catalyst for Aromatic Nitroreduction. Advanced Functional Materials, 2019, 29, 1905423.	14.9	112
15	Effect of initial texture on dynamic recrystallization of AZ31 Mg alloy during hot rolling. Materials Science & Scie	5.6	102
16	Characteristics of long {10-12} twin bands in sheet rolling of a magnesium alloy. Scripta Materialia, 2014, 74, 96-99.	5.2	102
17	Compressive mechanical behavior of Al/Mg composite rods with different types of Al sleeve. Acta Materialia, 2016, 120, 379-390.	7.9	98
18	Hot deformation behavior of AA7085 aluminum alloy during isothermal compression at elevated temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 596, 176-182.	5.6	93

#	Article	IF	CITATIONS
19	Hot deformation and dynamic recrystallization in Al-Mg-Si alloy. Materials Characterization, 2021, 173, 110976.	4.4	83
20	Evolution of cementite morphology in pearlitic steel wire during wet wire drawing. Materials Characterization, 2010, 61, 65-72.	4.4	80
21	Correlation Between Texture Variation and Transverse Tensile Behavior of Friction-Stir-Processed AZ31 Mg Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 2500-2508.	2.2	73
22	Mechanisms of fracture and inhomogeneous deformation on transverse tensile test of friction-stir-processed AZ31 Mg alloy. Materials Science & Science & Structural Materials: Properties, Microstructure and Processing, 2013, 565, 333-341.	5.6	73
23	Microstructural and textural evolution of commercially pure Zr sheet rolled at room and liquid nitrogen temperatures. Materials and Design, 2015, 85, 296-308.	7.0	73
24	Microstructure and mechanical properties of friction stir welded dissimilar Mg alloys of ZK60–AZ31. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2013, 561, 419-426.	5.6	69
25	Microstructure evolution and static recrystallization during hot rolling and annealing of an equiaxed-structure TC21 titanium alloy. Journal of Alloys and Compounds, 2018, 752, 14-22.	5.5	68
26	Umpolung Strategy for Synthesis of \hat{I}^2 -Ketonitriles through Hypervalent Iodine-Promoted Cyanation of Silyl Enol Ethers. Journal of Organic Chemistry, 2015, 80, 7212-7218.	3.2	67
27	Changes in texture and microstructure of friction stir welded Mg alloy during post-rolling and their effects on mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 582, 178-187.	5.6	66
28	Heterogeneous microstructures and microtextures in cube-oriented al crystals after channel die compression. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29, 2333-2344.	2.2	64
29	Improving the room temperature stretch formability of a Mg alloy thin sheet by pre-twinning. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 655, 1-8.	5.6	64
30	Crystallographic orientation dependent crack nucleation during the compression of a widmannst \hat{A}_{Ξ} ten-structure $\hat{I}_{\pm}/\hat{I}^{2}$ titanium alloy. Scripta Materialia, 2018, 156, 110-114.	5.2	62
31	Geometrical compatibility factor analysis of paired extension twins in extruded Mg–3Al–1Zn alloys. Materials and Design, 2015, 86, 656-663.	7.0	60
32	Improving tensile and compressive properties of magnesium alloy rods via a simple pre-torsion deformation. Materials and Design, 2015, 83, 270-275.	7.0	59
33	Controlling the recrystallization behavior of a Mg–3Al–1Zn alloy containing extension twins. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 622, 178-183.	5 . 6	59
34	Effect of dislocation-twin boundary interaction on deformation by twin boundary migration. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 95-99.	5.6	58
35	Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression. Materials Characterization, 2017, 131, 500-507.	4.4	55
36	The influence of a secondary twin on the detwinning deformation of a primary twin in Mg–3Al–1Zn alloy. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2014, 606, 81-91.	5.6	54

#	Article	IF	CITATIONS
37	Strain compatibility effect on the variant selection of connected twins in magnesium. Materials & Design, 2015, 76, 71-76.	5.1	54
38	{10-12} Twin variants selection mechanisms during twinning, re-twinning and detwinning. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 612, 431-439.	5.6	52
39	Enhancing stretch formability of rolled Mg sheets by pre-inducing contraction twins and recrystallization annealing. Materials Science & Discretials A: Structural Materials: Properties, Microstructure and Processing, 2015, 627, 369-373.	5.6	50
40	Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times. Journal of Alloys and Compounds, 2015, 647, 238-244.	5.5	47
41	Microstructure, texture and mechanical properties of commercial high-purity thick titanium plates jointed by electron beam welding. Materials Science & Degraphics A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 50-57.	5.6	47
42	The mechanism of twinning activation and variant selection in magnesium alloys dominated by slip deformation. Journal of Alloys and Compounds, 2016, 687, 352-359.	5.5	46
43	Dynamic restoration and deformation heterogeneity during hot deformation of a duplex-structure TC21 titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 712, 440-452.	5.6	46
44	Effect of initial texture on dynamic recrystallization and deformation mechanisms in AZ31 Mg alloy extruded at 573K. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 569, 18-26.	5.6	42
45	Strain localization in friction stir welded magnesium alloy during tension and compression deformation. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2014, 609, 88-91.	5.6	42
46	Synthesis of Hydrogenâ€Substituted Graphyne Film for Lithium–Sulfur Battery Applications. Small, 2019, 15, 1805344.	10.0	42
47	Experimental observation of $12\hat{l}\pm$ variants inherited from one \hat{l}^2 grain in a Zr alloy. Journal of Nuclear Materials, 2013, 440, 377-381.	2.7	41
48	Effect of subsequent tension and annealing on microstructure evolution and strength enhancement of friction stir welded Mg alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 602, 1-10.	5.6	40
49	Twinning characteristic in tension of magnesium alloys and its effect on mechanical properties. Materials and Design, 2016, 107, 503-510.	7.0	40
50	Experimental and numerical investigation of anisotropic and twinning behavior in Mg alloy under uniaxial tension. Materials and Design, 2016, 98, 333-343.	7.0	40
51	Understanding common grain boundary twins in Mg alloys by a composite Schmid factor. International Journal of Plasticity, 2019, 123, 208-223.	8.8	40
52	Deformation mechanisms and dynamic recrystallization of AZ31 Mg alloy with different initial textures during hot tension. Materials & Design, 2013, 50, 382-391.	5.1	39
53	Tailoring the texture and mechanical anisotropy of a Mg–2Zn–2Gd plate by varying the rolling path. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 653, 93-98.	5.6	39
54	Sulfination of alcohols with sodium sulfinates promoted by BF $<$ sub $>3<$ /sub $>\hat{A}\cdot$ OEt $<$ sub $>2<$ /sub $>$: an unexpected access. Green Chemistry, 2016, 18, 1874-1879.	9.0	38

#	Article	IF	CITATIONS
55	The different effects of twin boundary and grain boundary on reducing tension-compression yield asymmetry of Mg alloys. Scientific Reports, 2016, 6, 29283.	3.3	36
56	Largely alleviating the orientation dependence by sequentially changing strain paths. Materials and Design, 2016, 97, 464-472.	7.0	36
57	altimg="si1.svg"> <mml:mrow><mml:mrow><mml:mo stretchy="true">{</mml:mo><mml:mrow><mml:mn>10</mml:mn><mml:mrow><mml:mover accent="true"><mml:mn>1</mml:mn><a^< mml:mo=""></a^<></mml:mover></mml:mrow><td>n<i>8</i>88mml:m</td><td>136 1row><mm< td=""></mm<></td></mml:mrow></mml:mrow></mml:mrow>	n <i>8</i> 88mml:m	136 1row> <mm< td=""></mm<>
58	Twinning characteristic and variant selection in compression of a pre-side-rolled Mg alloy sheet. Materials Science & Digineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 614, 106-115.	5.6	35
59	A quantitative study on mechanical behavior of Mg alloys with bimodal texture components. Acta Materialia, 2021, 214, 117013.	7.9	35
60	Influence of pre-torsion deformation on microstructures and properties of cold drawing pearlitic steel wires. Materials & Design, 2013, 50, 285-292.	5.1	34
61	Microstructure-based modeling of tensile deformation of a friction stir welded AZ31 Mg alloy. Materials Science & Description of the Structural Materials: Properties, Microstructure and Processing, 2017, 687, 63-72.	5.6	34
62	Variant selection of {10-12}-{10-12} double twins during the tensile deformation of an AZ31 Mg alloy. Materials Science & Damp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 226-233.	5.6	33
63	A weak texture dependence of Hall–Petch relation in a rare-earth containing magnesium alloy. Journal of Materials Science and Technology, 2022, 99, 251-259.	10.7	33
64	Microstructure and texture evolution in fully pearlitic steel during wire drawing. Science China Technological Sciences, 2013, 56, 1139-1146.	4.0	32
65	Effect of Twin Boundary–Dislocation–Solute Interaction on Detwinning in a Mg–3Al–1Zn Alloy. Journal of Materials Science and Technology, 2016, 32, 1239-1244.	10.7	32
66	Iron-catalysed sequential reaction towards $\hat{l}\pm$ -aminonitriles from secondary amines, primary alcohols and trimethylsilyl cyanide. Chemical Communications, 2016, 52, 2776-2779.	4.1	32
67	Quasi-in-situ analysis of dependency of deformation mechanism and work-hardening behavior on texture in Mg-2Zn-0.1Ca alloy. Journal of Alloys and Compounds, 2019, 784, 1187-1197.	5.5	31
68	The activation of twinning and texture evolution during bending of friction stir welded magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 646, 145-153.	5.6	30
69	The disordered structure of Q′ and C phases in Al–Mg–Si–Cu alloy. Scripta Materialia, 2016, 118, 55-59.	5.2	30
70	Effect of initial orientation on dynamic recrystallization of a zirconium alloy during hot deformation. Materials Characterization, 2018, 145, 444-453.	4.4	30
71	Influence of rolling ways on microstructure and anisotropy of AZ31 alloy sheet. Transactions of Nonferrous Metals Society of China, 2010, 20, s589-s593.	4.2	28
72	The effect of architecture on the mechanical properties of Mg–3Al–1Zn Rods Containing Hard Al Alloy Cores. Scripta Materialia, 2015, 98, 56-59.	5.2	28

#	Article	IF	CITATIONS
73	Effect of titanium grain orientation on the growth of compounds at diffusion bonded titanium/steel interfaces. Materials Characterization, 2019, 148, 243-251.	4.4	28
74	Ex-situ study on mechanical properties and deformation mechanism of three typical microstructures in TA19 titanium alloy. Materials Characterization, 2020, 167, 110521.	4.4	28
75	The mechanism for an orientation dependence of grain boundary strengthening in pure titanium. International Journal of Plasticity, 2022, 153, 103276.	8.8	28
76	Evolution mechanisms of the primary $\hat{l}\pm$ and \hat{l}^2 phases during $\hat{l}\pm/\hat{l}^2$ deformation of an $\hat{l}\pm/\hat{l}^2$ titanium alloy TC8. Materials Characterization, 2016, 120, 115-123.	4.4	27
77	Effect of cooling rate on \hat{I}^2 \hat{a}^{\dagger} , \hat{I}^{\pm} transformation during quenching of a Zr-0.85Sn-0.4Nb-0.4Fe-0.1Cr-0.05Cu alloy. Science China Technological Sciences, 2012, 55, 2960-2964.	4.0	26
78	The different hardening effects of tension twins on basal slip and prismatic slip in Mg alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 700, 695-700.	5.6	26
79	The different effects of solute segregation at twin boundaries on mechanical behaviors of twinning and detwinning. Materials Science & Discretiance and Processing, 2015, 644, 365-373.	5.6	25
80	Influence of pre-recovery on the subsequent recrystallization and mechanical properties of a twin-roll cast Al-Mn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 682, 63-72.	5.6	25
81	Effect of Heat Treatment Condition on the Flow Behavior and Recrystallization Mechanisms of Aluminum Alloy 7055. Materials, 2019, 12, 311.	2.9	25
82	A comparative study between uniaxial compression and plane strain compression of Mg–3Al–1Zn alloy using experiments and simulations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 597, 349-358.	5.6	24
83	The role of dislocations in strain hardening of an extension twinning predominant deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 389-395.	5.6	24
84	A new annealing hardening mechanism in pre-twinned Mg–3Al–1Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 654, 344-351.	5.6	24
85	Solute atom mediated Hall-Petch relations for magnesium binary alloys. Scripta Materialia, 2022, 210, 114451.	5.2	24
86	Plastic deformation behavior of AZ31 magnesium alloy under multiple passes cross compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 50-57.	5.6	22
87	Influence of Torsion Deformation on Textures of Cold Drawing Pearlitic Steel Wires. Acta Metallurgica Sinica (English Letters), 2015, 28, 707-714.	2.9	22
88	Crystallographic analysis on the activation of multiple twins in rolled AZ31 Mg alloy sheets during uniaxial and plane strain compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 652, 42-50.	5.6	22
89	The effect of hot rolling regime on texture and mechanical properties of an as-cast Mg–2Zn–2Gd plate. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 731, 288-295.	5.6	22
90	Strain-Path Dependence of \$\$ { 10ar{1}2} \$\$ Twinning in a Rolled Mg–3Al–1Zn Alloy: Influence of Twinning Model. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 118-131.	2.2	22

#	Article	IF	Citations
91	The application of back-scattered electron imaging for characterization of pearlitic steels. Science China Technological Sciences, 2011, 54, 2368-2372.	4.0	21
92	Thermal stability of different texture components in extruded Mg–3Al–1Zn alloy. Journal of Magnesium and Alloys, 2019, 7, 577-583.	11.9	21
93	Detwinning behavior of Mg–3Al–1Zn alloy at elevated temperatures. Materials Science & Detwinning A: Structural Materials: Properties, Microstructure and Processing, 2014, 617, 24-30.	5.6	20
94	Boron Trifluorideâ <diethyl 2015,="" 3115-3120.<="" 357,="" a="" advanced="" alcohols:="" and="" catalysis,="" diphenylmethyl="" etherification="" ethers.="" etherâ€catalyzed="" metalâ€free="" of="" pathway="" synthesis="" td="" to=""><td>4.3</td><td>20</td></diethyl>	4.3	20
95	Obtaining high strength and high plasticity in a Mg-3Al-1Zn plate using pre-tension and annealing treatments. Journal of Alloys and Compounds, 2017, 704, 406-412.	5.5	20
96	Effects of asymmetrical rolling on through-thickness microstructure and texture of body-centered cubic (BCC) tantalum. International Journal of Refractory Metals and Hard Materials, 2019, 78, 51-60.	3.8	20
97	Microstructure characterization and quasi-static failure behavior of resistance spot welds of AA6111-T4 aluminum alloy. Transactions of Nonferrous Metals Society of China, 2014, 24, 3879-3885.	4.2	19
98	Influence of observation plane on twin variant identification in magnesium via trace and misorientation analysis. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 618, 558-562.	5.6	19
99	Influence of annealing on the microstructure, interfacial compounds and mechanical properties of hot rolling bonded Ti/steel clad plate with bimetallic interlayered steel and vanadium. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138227.	5.6	19
100	On the texture memory effect of a cross-rolled Mg-2Zn-2Gd plate after unidirectional rolling. Journal of Materials Science and Technology, 2020, 41, 98-104.	10.7	19
101	Dislocation Boundary Structure from Low to Medium Strain of Cold Rolling AA3104 Aluminum Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1487-1497.	2.2	18
102	Ethers as hydrogen sources in BF $<$ sub $>3<$ /sub $>\hat{A}\cdot$ OEt $<$ sub $>2<$ /sub $>$ promoted reduction of diphenylmethyl alcohols, ethers and esters to hydrocarbons. RSC Advances, 2015, 5, 85291-85295.	3.6	18
103	Inhomogeneous deformation of {111} <uvw> grain in cold rolled tantalum. Journal of Materials Science and Technology, 2018, 34, 2178-2182.</uvw>	10.7	18
104	The texture dependence of strength in slip and twinning predominant deformations of Mg-3Al-1Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 717, 34-40.	5.6	18
105	Quantitative analysis: How annealing temperature influences recrystallization texture and grain shape in tantalum. International Journal of Refractory Metals and Hard Materials, 2018, 72, 244-252.	3.8	18
106	Effect of lamellar structural parameters on the bending fracture behavior of AA1100/AA7075 laminated metal composites. Journal of Materials Science and Technology, 2022, 99, 28-38.	10.7	18
107	Observation and analysis of the coexistence of two "opposite―twin modes in a Mg-Al-Zn alloy. Materials and Design, 2016, 102, 196-201.	7.0	17
108	Comparative examinations on the activity and variant selection of twinning during tension and compression of magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 658, 229-237.	5.6	17

#	Article	IF	CITATIONS
109	Study of the Q′ (Q)-phase precipitation in Al–Mg–Si–Cu alloys by quantification of atomic-resolution transmission electron microscopy images and atom probe tomography. Journal of Materials Science, 2019, 54, 7943-7952.	3.7	17
110	Effects of annealing on the interface microstructures and mechanical properties of hot roll bonded Ti6Al4V/AA6061 clad sheets. Journal of Materials Research and Technology, 2020, 9, 11813-11825.	5.8	17
111	overflow="scroll"> <mml:mrow><mml:mo stretchy="false">{<mml:mn>10</mml:mn><mml:mover accent="true"><mml:mn>1</mml:mn><mml:mrow><mml:mo stretchy="true">Â⁻</mml:mo </mml:mrow><mml:mn>2</mml:mn><mml:mo< td=""><td>5.6</td><td>16</td></mml:mo<></mml:mover </mml:mo </mml:mrow>	5.6	16
112	Thermal stability of extension twins in Mg-3Al-1Zn rods. Journal of Alloys and Compounds, 2017, 696, 428-434.	5 . 5	15
113	Thermo-mechanically affected zone in AA6111 resistance spot welds. Journal of Materials Processing Technology, 2017, 249, 463-470.	6.3	15
114	Comparing the Through-Thickness Gradient of the Deformed and Recrystallized Microstructure in Tantalum with Unidirectional and Clock Rolling. Materials, 2019, 12, 169.	2.9	15
115	Evolution of interface and collaborative deformation between Ti and steel during hot roll bonding. Materials Characterization, 2020, 164, 110354.	4.4	15
116	Microstructure and mechanical properties of Ti6Al4V/AA6061/AZ31 laminated metal composites (LMCs) fabricated by hot roll bonding. Journal of Alloys and Compounds, 2021, 861, 157943.	5.5	15
117	Static globularization and grain morphology evolution of \hat{l}_{\pm} and \hat{l}_{\pm}^2 phases during annealing of hot-rolled TC21 titanium alloy. Transactions of Nonferrous Metals Society of China, 2021, 31, 2664-2676.	4.2	15
118	Pyramidal slips in high cycle fatigue deformation of a rolled Mg-3Al-1Zn magnesium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 699, 247-253.	5.6	15
119	EVOLUTIONS OF MICROSTRUCTURE AND FERRITIC MICROORIENTATION AND TEXTURE IN A PEARLITIC STEEL WIRE DURING COLD DRAWING. Jinshu Xuebao/Acta Metallurgica Sinica, 2010, 2010, 141-146.	0.3	15
120	Electron backscatter diffraction investigation of duplex-phase microstructure in a forged Zr-2.5Nb alloy. Science China Technological Sciences, 2016, 59, 673-679.	4.0	14
121	Plastic anisotropy and fracture behavior of AZ31 magnesium alloy. Transactions of Nonferrous Metals Society of China, 2011, 21, 880-884.	4.2	13
122	Comparative study on twinning characteristics during two post-weld compression paths and their effects on joint enhancement. Scientific Reports, 2016, 6, 39779.	3.3	13
123	Varying the strong basal texture in a Mg-3Al-1Zn plate by a new wave-shaped interface rolling. Materials Letters, 2018, 213, 151-153.	2.6	13
124	Strain accommodation of <110>-normal direction-oriented grains in micro-shear bands of high-purity tantalum. Journal of Materials Science, 2018, 53, 12543-12552.	3.7	13
125	Enhancing the Mechanical Properties of Hot Roll Bonded Al/Ti Laminated Metal Composites (LMCs) by Pre-Rolling Diffusion Process. Metals, 2019, 9, 795.	2.3	13
126	Effect of combined addition of Ag and Cu on the precipitation behavior for an Al-Mg-Si alloy. Materials Characterization, 2021, 171, 110736.	4.4	13

#	Article	IF	CITATIONS
127	Study on the compressive deformation behavior of a basal textured AZ31 magnesium alloy from the perspective of local strain. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 842, 143080.	5. 6	12
128	Influence of extrusion ratio on microstructure and texture developments of high-temperature extruded AZ31 Mg alloy. Science China Technological Sciences, 2012, 55, 490-495.	4.0	11
129	Deformation bands in fully pearlitic steel during wire drawing. Science China Technological Sciences, 2014, 57, 796-803.	4.0	10
130	Tailoring the Microstructure and Mechanical Property of AZ80 Alloys by Multiple Twinning and Aging Precipitation. Advanced Engineering Materials, 2017, 19, 1700332.	3 . 5	10
131	Effect of intermetallic compounds (IMCs) on the interfacial bonding strength and mechanical properties of pre-rolling diffusion ARBed Al/Ti laminated composites. Materials Characterization, 2020, 170, 110731.	4.4	10
132	Effect of Clock Rolling on Microstructures and Properties of AZ31 Magnesium Alloy Sheets. Materials Science Forum, 0, 686, 40-45.	0.3	9
133	Simulation of texture evolution and deformation mechanism in Mg-3Al-1Zn alloy during uniaxial compression. Science China Technological Sciences, 2015, 58, 2052-2059.	4.0	9
134	Concurrent inheritance of microstructure and texture after slow $\hat{l}^2\hat{a}^{\dagger}\hat{l}^2$ cooling of commercially pure Zr. Science China Technological Sciences, 2016, 59, 1771-1776.	4.0	9
135	Effect of cross rolling on the interface morphology and mechanical properties of ARBed AA1100/AA7075 laminated metal composites. Journal of Alloys and Compounds, 2019, 805, 617-623.	5.5	9
136	Deformation and annealing behavior in the †interaction zone†of cold-rolled tantalum sheets. Vacuum, 2019, 164, 105-113.	3 . 5	9
137	Initial orientation analysis of the contribution of pyramidal ã€^c+a〉 slip to the dynamic recrystallization in a Zr-1Sn-0.3Nb alloy under warm to hot deformation. Journal of Alloys and Compounds, 2019, 787, 318-331.	5. 5	9
138	Effect of strain path change on the through-thickness microstructure during tantalum rolling. International Journal of Refractory Metals and Hard Materials, 2020, 87, 105168.	3.8	9
139	Annealing induced concentration of basal poles toward the normal direction of a hot rolled Mg–5.7Zn plate. Journal of Alloys and Compounds, 2016, 666, 341-345.	5.5	8
140	Orientation-dependent grain boundary characteristics in tantalum upon the change of strain path. Materials Characterization, 2019, 154, 277-284.	4.4	8
141	Pass number dependence of through-thickness microstructure homogeneity in tantalum sheets under the change of strain path. Materials Characterization, 2020, 160, 110076.	4.4	8
142	HETEROGENEOUS MICROSTRUCTURE AND TEXTURE EVOLUTION DURING FABRICATION OF ZrSnNb ZIRCONIUM ALLOY SHEETS. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 48, 393-400.	0.3	8
143	Precise determination of the $\hat{l}\pm\hat{a}\dagger'\hat{l}\pm+\hat{l}^2$ phase transformation temperature of Zr-1.0Sn-0.3Nb-0.3Fe alloy. Science China Technological Sciences, 2013, 56, 60-65.	4.0	7
144	Tailoring the microstructure and mechanical properties of the final Al-Mn foils by different intermediate annealing process. Journal of Materials Science and Technology, 2017, 33, 961-970.	10.7	7

#	Article	IF	CITATIONS
145	Effect of varying α phase fraction on the mechanical properties and deformation mechanisms in a metastable β-ZrTiAlV alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138784.	5.6	7
146	Through-thickness texture gradient of tantalum sputtering target. Rare Metals, 2017, 36, 523-526.	7.1	6
147	Fracture morphology and crack mechanism in pure polycrystalline magnesium under tension–compression fatigue testing. Rare Metals, 2020, 39, 162-168.	7.1	6
148	Examination of dynamic recrystallization during compression of AZ31 magnesium. Science in China Series D: Earth Sciences, 2009, 52, 176-179.	0.9	5
149	Correlation between Flow Behavior and Microstructure Evolution during $\hat{l}\pm\hat{l}^2$ Deformation of TA19 Titanium Alloy. Advanced Engineering Materials, 2016, 18, 1808-1815.	3.5	5
150	Effect of grain size on $\hat{l}\pm$ -variant selection in a ZrTiAlV alloy. Science China Technological Sciences, 2019, 62, 982-988.	4.0	5
151	Tailoring the microstructure and texture of a dual-phase Mg–8Li alloy by varying the rolling path. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 844, 143202.	5.6	5
152	Developing a Basal Texture with Two Peaks Tilting Towards the Transverse Direction in Hot Rolled Mg-5.7Zn-0.5Zr Plates. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4276-4286.	2.2	4
153	Crystallographic analysis of nucleation for random orientations in high-purity tantalum. Journal of Materials Research, 2018, 33, 1755-1763.	2.6	4
154	Quasi-In-Situ EBSD Observation of the Orientation Evolution in Polycrystalline Tantalum During Rolling Deformation. Acta Metallurgica Sinica (English Letters), 2019, 32, 1015-1020.	2.9	4
155	Effect of Hot Rolling and Annealing on Phase Component, Recrystallization, and Mechanical Properties of TC21 Titanium Alloy. Journal of Materials Engineering and Performance, 2022, 31, 2496-2508.	2.5	4
156	Effect of Temperature on Microstructure and Texture during Compression of AZ31. Materials Science Forum, 2007, 546-549, 245-248.	0.3	3
157	Microstructure and texture evolution during warm compression of the magnesium alloy AZ31. Science in China Series D: Earth Sciences, 2009, 52, 186-189.	0.9	3
158	Energy investigations on the mechanical properties of magnesium alloyed by $X = C$, B , N , O and vacancy. Frontiers of Materials Science, 2013, 7, 405-412.	2.2	3
159	Effect of gaseous carbon dioxide on grain refinement in Mg-8Al alloy. Materials Science and Technology, 2017, 33, 2173-2179.	1.6	3
160	Characterization of shock-induced anomalous $112 \hat{A}^-1$ twinning activity in a \hat{I}^2 -cooled zirconium. Materials Characterization, 2020, 168, 110541.	4.4	3
161	Evolution mechanism of lamellar \hat{l}_{\pm} and interlayered \hat{l}^2 during hot compression of TC21 titanium alloy with a widmanst \hat{A}_{Ξ} ten structure. Chinese Journal of Aeronautics, 2021, 35, 475-475.	5. 3	3
162	Evaluation of Textural Effect on the Rollability of AZ31 Alloys by Wedgeâ€Shaped Sample Design. Advanced Engineering Materials, 2017, 19, 1700035.	3.5	2

QING LIU

#	Article	lF	CITATIONS
163	Understanding the Role of Short-Range Order in the Nucleation and Transformation of the B′/Q′ Precipitates in Al-Mg-Si(-Cu) Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3366.	2.2	2
164	Twin pattern evolution in a fine-grained Mg alloy subjected to indentation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 430-435.	5 . 6	1
165	Effect of Temperature on Microstructure and Texture during Compression of AZ31. Materials Science Forum, 0, , 245-248.	0.3	1
166	\hat{l}^2 Grain Evolution and Static Recrystallization Mechanism during Hot Rolling and Annealing of Ti-35421 Titanium Alloy. Journal of Materials Engineering and Performance, 2022, 31, 9481-9491.	2.5	1
167	Effect of Mo and Bi Additions on the Microstructure of Zr–Cr–Fe Alloy After β-Quenching. Minerals, Metals and Materials Series, 2017, , 183-192.	0.4	0