List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7261927/publications.pdf Version: 2024-02-01

IDINIA S KHOKHLOVA

#	Article	IF	CITATIONS
1	Effect of Air Temperature and Humidity on the Survival of Pre-Imaginal Stages of Two Flea Species (Siphonaptera: Pulicidae). Journal of Medical Entomology, 2001, 38, 629-637.	1.8	164
2	Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia, 2005, 146, 209-217.	2.0	146
3	Phylogenetic Signal in Module Composition and Species Connectivity in Compartmentalized Host-Parasite Networks. American Naturalist, 2012, 179, 501-511.	2.1	127
4	THE EFFECT OF HOST DENSITY ON ECTOPARASITE DISTRIBUTION: AN EXAMPLE OF A RODENT PARASITIZED BY FLEAS. Ecology, 2002, 83, 164-175.	3.2	126
5	Flea species richness and parameters of host body, host geography and host â€ [~] milieu'. Journal of Animal Ecology, 2004, 73, 1121-1128.	2.8	125
6	<i>Bartonella</i> Infection in Rodents and Their Flea Ectoparasites: An Overview. Vector-Borne and Zoonotic Diseases, 2015, 15, 27-39.	1.5	122
7	Ectoparasitic "Jacksâ€ofâ€Allâ€Tradesâ€: Relationship between Abundance and Host Specificity in Fleas (Siphonaptera) Parasitic on Small Mammals. American Naturalist, 2004, 164, 506-516.	2.1	101
8	Spatial variation in species diversity and composition of flea assemblages in small mammalian hosts: geographical distance or faunal similarity?. Journal of Biogeography, 2005, 32, 633-644.	3.0	98
9	Development rates of two Xenopsylla flea species in relation to air temperature and humidity. Medical and Veterinary Entomology, 2001, 15, 249-258.	1.5	91
10	Energy cost of ectoparasitism: the fleaXenopsylla ramesison the desert gerbilGerbillus dasyurus. Journal of Zoology, 2002, 258, 349-354.	1.7	91
11	Geographical variation in host specificity of fleas (Siphonaptera) parasitic on small mammals: the influence of phylogeny and local environmental conditions. Ecography, 2004, 27, 787-797.	4.5	89
12	Gender-biased parasitism in small mammals: patterns, mechanisms, consequences. Mammalia, 2012, 76, 1-13.	0.7	84
13	Host specificity and geographic range in haematophagous ectoparasites. Oikos, 2005, 108, 449-456.	2.7	82
14	Habitat Dependence of a Parasite-Host Relationship: Flea (Siphonaptera) Assemblages in Two Gerbil Species of the Negev Desert. Journal of Medical Entomology, 1998, 35, 303-313.	1.8	76
15	Assembly rules of ectoparasite communities across scales: combining patterns of abiotic factors, host composition, geographic space, phylogeny and traits. Ecography, 2015, 38, 184-197.	4.5	76
16	Immune response to fleas in a wild desert rodent: effect of parasite species, parasite burden, sex of host and host parasitological experience. Journal of Experimental Biology, 2004, 207, 2725-2733.	1.7	74
17	Relationship between host diversity and parasite diversity: flea assemblages on small mammals. Journal of Biogeography, 2004, 31, 1857-1866.	3.0	70
18	Habitat-dependent differences in architecture and microclimate of the burrows of Sundevall's jird (Meriones crassus) (Rodentia: Gerbillinae) in the Negev Desert, Israel. Journal of Arid Environments, 2002, 51, 265-279.	2.4	69

#	Article	IF	CITATIONS
19	Relationships between parasite abundance and the taxonomic distance among a parasite's host species: an example with fleas parasitic on small mammals. International Journal for Parasitology, 2004, 34, 1289-1297.	3.1	69
20	Similarity in ectoparasite faunas of Palaearctic rodents as a function of host phylogenetic, geographic or environmental distances: Which matters the most?. International Journal for Parasitology, 2010, 40, 807-817.	3.1	69
21	Sex-biased parasitism is not universal: evidence from rodent–flea associations from three biomes. Oecologia, 2013, 173, 1009-1022.	2.0	66
22	Evolution of host specificity in fleas: Is it directional and irreversible?. International Journal for Parasitology, 2006, 36, 185-191.	3.1	64
23	Host specificity and foraging efficiency in blood-sucking parasite: feeding patterns of the flea Parapulex chephrenis on two species of desert rodents. Parasitology Research, 2003, 90, 393-399.	1.6	62
24	Annual cycles of four flea species in the central Negev desert. Medical and Veterinary Entomology, 2002, 16, 266-276.	1.5	60
25	Is a starving host tastier? Reproduction in fleas parasitizing food-limited rodents. Functional Ecology, 2005, 19, 625-631.	3.6	59
26	Density-dependent host selection in ectoparasites: An application of isodar theory to fleas parasitizing rodents. Oecologia, 2003, 134, 365-372.	2.0	57
27	The effect of vegetation cover on vigilance and foraging tactics in the fat sand rat Psammomys obesus. Journal of Ethology, 2001, 19, 105-113.	0.8	56
28	Host discrimination by two desert fleas using an odour cue. Animal Behaviour, 2002, 64, 33-40.	1.9	56
29	Fitness consequences of host selection in ectoparasites: testing reproductive patterns predicted by isodar theory in fleas parasitizing rodents. Journal of Animal Ecology, 2004, 73, 815-820.	2.8	56
30	Body size, granivory and seasonal dietary shifts in desert gerbilline rodents. Functional Ecology, 1997, 11, 53-59.	3.6	54
31	Larval interspecific competition in two flea species parasitic on the same rodent host. Ecological Entomology, 2005, 30, 146-155.	2.2	53
32	Average daily metabolic rate of rodents: habitat and dietary comparisons. Functional Ecology, 1998, 12, 63-73.	3.6	52
33	Immune responses to fleas in two rodent species differing in natural prevalence of infestation and diversity of flea assemblages. Parasitology Research, 2004, 94, 304-311.	1.6	51
34	Latitudinal gradients in niche breadth: empirical evidence from haematophagous ectoparasites. Journal of Biogeography, 2008, 35, 592-601.	3.0	51
35	Temporal dynamics of a T-cell mediated immune response in desert rodents. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2006, 145, 554-559.	1.8	50
36	Spatial patterns of rodent communities in the Ramon erosion cirque, Negev Highlands, Israel. Journal of Arid Environments, 1996, 32, 319-327.	2.4	47

IRINA S KHOKHLOVA

#	Article	IF	CITATIONS
37	Is abundance a species attribute? An example with haematophagous ectoparasites. Oecologia, 2006, 150, 132-140.	2.0	47
38	Energy costs of blood digestion in a host-specific haematophagous parasite. Journal of Experimental Biology, 2005, 208, 2489-2496.	1.7	46
39	Investigation of Bartonella acquisition and transmission in Xenopsylla ramesis fleas (Siphonaptera:) Tj ETQq1 1	0.784314 ı 3.9	rgBT /Overloci 46
40	Traitâ€based and phylogenetic associations between parasites and their hosts: a case study with small mammals and fleas in the Palearctic. Oikos, 2016, 125, 29-38.	2.7	42
41	Beta-specificity: The turnover of host species in space and another way to measure host specificity. International Journal for Parasitology, 2011, 41, 33-41.	3.1	41
42	Age, intensity of infestation by flea parasites and body mass loss in a rodent host. Parasitology, 2006, 133, 187.	1.5	40
43	Sampling fleas: the reliability of host infestation data. Medical and Veterinary Entomology, 2004, 18, 232-240.	1.5	38
44	Is the feeding and reproductive performance of the flea, Xenopsylla ramesis, affected by the gender of its rodent host, Meriones crassus?. Journal of Experimental Biology, 2009, 212, 1429-1435.	1.7	37
45	Abundance patterns and coexistence processes in communities of fleas parasitic on small mammals. Ecography, 2005, 28, 453-464.	4.5	36
46	Ectoparasitism and stress hormones: strategy of host exploitation, common host–parasite history and energetics matter. Journal of Animal Ecology, 2014, 83, 1113-1123.	2.8	36
47	Sexual size dimorphism, morphological traits and jump performance in seven species of desert fleas (Siphonaptera). Journal of Zoology, 2003, 261, 181-189.	1.7	35
48	Geographical variation in the 'bottom-up' control of diversity: fleas and their small mammalian hosts. Global Ecology and Biogeography, 2007, 16, 179-186.	5.8	35
49	<i>Bartonella</i> Genotypes in Fleas (Insecta: Siphonaptera) Collected from Rodents in the Negev Desert, Israel. Applied and Environmental Microbiology, 2010, 76, 6864-6869.	3.1	34
50	Host gender and offspring quality in a flea parasitic on a rodent. Journal of Experimental Biology, 2010, 213, 3299-3304.	1.7	34
51	Ectoparasite fitness in auxiliary hosts: phylogenetic distance from a principal host matters. Journal of Evolutionary Biology, 2012, 25, 2005-2013.	1.7	34
52	The effect of substrate on survival and development of two species of desert fleas (Siphonaptera:) Tj ETQq0 0 0	rgBT/Ove	rloç <u>k</u> 10 Tf 50
53	Nested pattern in flea assemblages across the host's geographic range. Ecography, 2005, 28, 475-484.	4.5	33

Aggregation and species coexistence in fleas parasitic on small mammals. Ecography, 2006, 29, 159-168. 4.5 33

#	Article	IF	CITATIONS
55	Temporal variation in parasite infestation of a host individual: does a parasite-free host remain uninfested permanently?. Parasitology Research, 2006, 99, 541-545.	1.6	33
56	Covariance in species diversity and facilitation among non-interactive parasite taxa: all against the host. Parasitology, 2005, 131, 557.	1.5	31
57	Deconstructing spatial patterns in species composition of ectoparasite communities: the relative contribution of host composition, environmental variables and geography. Clobal Ecology and Biogeography, 2010, 19, 515-526.	5.8	31
58	GRANIVORY AND PLANT SELECTION BY DESERT GERBILS OF DIFFERENT BODY SIZE. Ecology, 1997, 78, 2218-2229.	3.2	30
59	Resource predictability and host specificity in fleas: the effect of host body mass. Parasitology, 2006, 133, 81.	1.5	30
60	Ecological characteristics of flea species relate to their suitability as plague vectors. Oecologia, 2006, 149, 474-481.	2.0	30
61	Nestedness and βâ€diversity in ectoparasite assemblages of small mammalian hosts: effects of parasite affinity, host biology and scale. Oikos, 2011, 120, 630-639.	2.7	29
62	Haemoplasmas in wild rodents: Routes of transmission and infection dynamics. Molecular Ecology, 2018, 27, 3714-3726.	3.9	29
63	Flea infestation and energy requirements of rodent hosts: are there general rules?. Functional Ecology, 2006, 20, 1028-1036.	3.6	28
64	Aggregative structure is the rule in communities of fleas: null model analysis. Ecography, 2011, 34, 751-761.	4.5	28
65	Variable effects of host characteristics on species richness of flea infracommunities in rodents from three continents. Parasitology Research, 2014, 113, 2777-2788.	1.6	28
66	Metabolic rate and jump performance in seven species of desert fleas. Journal of Insect Physiology, 2004, 50, 149-156.	2.0	27
67	Programmed versus stimulus-driven antiparasitic grooming in a desert rodent. Behavioral Ecology, 2008, 19, 929-935.	2.2	26
68	Effect of host gender on blood digestion in fleas: mediating role of environment. Parasitology Research, 2009, 105, 1667-1673.	1.6	26
69	Transmission Dynamics of Bartonella sp. Strain OE 1-1 in Sundevall's Jirds (Meriones crassus). Applied and Environmental Microbiology, 2013, 79, 1258-1264.	3.1	25
70	Male hosts drive infracommunity structure of ectoparasites. Oecologia, 2011, 166, 1099-1110.	2.0	24
71	Immunocompetence and flea parasitism of a desert rodent. Functional Ecology, 2006, 20, 637-646.	3.6	23
72	A tradeâ€off between quantity and quality of offspring in haematophagous ectoparasites: the effect of the level of specialization. Journal of Animal Ecology, 2014, 83, 397-405.	2.8	22

#	Article	IF	CITATIONS
73	Fiber Digestion and Energy Utilization of Fat Sand Rats (Psammomys obesus) Consuming the ChenopodAnabasis articulata. Physiological and Biochemical Zoology, 2000, 73, 574-580.	1.5	21
74	ENERGY REQUIREMENTS DURING REPRODUCTION IN FEMALE COMMON SPINY MICE (ACOMYS CAHIRINUS). Journal of Mammalogy, 2002, 83, 645-651.	1.3	21
75	Compositional and phylogenetic dissimilarity of host communities drives dissimilarity of ectoparasite assemblages: geographical variation and scale-dependence. Parasitology, 2012, 139, 338-347.	1.5	21
76	Vertical nontransovarial transmission of <i><scp>B</scp>artonella</i> in fleas. Molecular Ecology, 2013, 22, 4747-4752.	3.9	21
77	Biogeography of parasite abundance: latitudinal gradient and distance decay of similarity in the abundance of fleas and mites, parasitic on small mammals in the Palearctic, at three spatial scales. International Journal for Parasitology, 2018, 48, 857-866.	3.1	21
78	Diversification of ectoparasite assemblages and climate: an example with fleas parasitic on small mammals. Global Ecology and Biogeography, 2005, 14, 167-175.	5.8	20
79	Relationships between local and regional species richness in flea communities of small mammalian hosts: saturation and spatial scale. Parasitology Research, 2006, 98, 403-413.	1.6	20
80	Between-host phylogenetic distance and feeding efficiency in hematophagous ectoparasites: rodent fleas and a bat host. Parasitology Research, 2007, 101, 365-371.	1.6	20
81	Novel evidence suggests that a â€~ <i><scp>R</scp>ickettsia felis</i> â€like' organism is an endosymbiont of the desert flea, <i><scp>X</scp>enopsylla ramesis</i> . Molecular Ecology, 2015, 24, 1364-1373.	3.9	20
82	Effects of parasite specificity and previous infestation of hosts on the feeding and reproductive success of rodentâ€infesting fleas. Functional Ecology, 2008, 22, 530-536.	3.6	19
83	Respiratory Gas Exchange in the Flea <i>Xenopsylla conformis</i> (Siphonaptera: Pulicidae). Journal of Medical Entomology, 2001, 38, 735-739.	1.8	18
84	Scaleâ€invariance of niche breadth in fleas parasitic on small mammals. Ecography, 2008, 31, 630-635.	4.5	18
85	Ecological correlates of body size in gamasid mites parasitic on small mammals: abundance and niche breadth. Ecography, 2013, 36, 1042-1050.	4.5	18
86	What are the factors determining the probability of discovering a flea species (Siphonaptera)?. Parasitology Research, 2005, 97, 228-237.	1.6	17
87	Abundance and distribution of fleas on desert rodents: linking Taylor's power law to ecological specialization and epidemiology. Parasitology, 2005, 131, 825.	1.5	17
88	Discrimination of host sex by a haematophagous ectoparasite. Animal Behaviour, 2011, 81, 275-281.	1.9	17
89	Use it or lose it: reproductive implications of ecological specialization in a haematophagous ectoparasite. Journal of Evolutionary Biology, 2012, 25, 1140-1148.	1.7	17
90	BODY MASS AND ENVIRONMENT: A STUDY IN NEGEV RODENTS. Israel Journal of Zoology, 2001, 47, 1-13.	0.2	16

IRINA S KHOKHLOVA

#	Article	IF	CITATIONS
91	Historical biogeography of fleas: the former Bering Land Bridge and phylogenetic dissimilarity between the Nearctic and Palearctic assemblages. Parasitology Research, 2015, 114, 1677-1686.	1.6	16
92	The effects of environment, hosts and space on compositional, phylogenetic and functional beta-diversity in two taxa of arthropod ectoparasites. Parasitology Research, 2019, 118, 2107-2120.	1.6	16
93	Phylogenetic and compositional diversity are governed by different rules: a study of fleas parasitic on small mammals in four biogeographic realms. Ecography, 2019, 42, 1000-1011.	4.5	16
94	Do Fleas Affect Energy Expenditure of Their Free-Living Hosts?. PLoS ONE, 2010, 5, e13686.	2.5	16
95	Effects of food abundance, age, and flea infestation on the body condition and immunological variables of a rodent host, and their consequences for flea survival. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 150, 66-74.	1.8	15
96	Effects of Bartonella spp. on Flea Feeding and Reproductive Performance. Applied and Environmental Microbiology, 2013, 79, 3438-3443.	3.1	15
97	Body size and ecological traits in fleas parasitic on small mammals in the Palearctic: larger species attain higher abundance. Oecologia, 2018, 188, 559-569.	2.0	15
98	Desert Gerbils Affect Bacterial Composition of Soil. Microbial Ecology, 2013, 66, 940-949.	2.8	14
99	Environment-related and host-related factors affecting the occurrence of lice on rodents in Central Europe. Parasitology, 2015, 142, 938-947.	1.5	14
100	Reproductive consequences of female size in haematophagous ectoparasites. Journal of Experimental Biology, 2016, 219, 2368-76.	1.7	14
101	Drivers of compositional turnover are related to species' commonness in flea assemblages from four biogeographic realms: zeta diversity and multi-site generalised dissimilarity modelling. International Journal for Parasitology, 2020, 50, 331-344.	3.1	14
102	Discrimination of midday jird's odour by house mice. Animal Behaviour, 1996, 52, 659-665.	1.9	13
103	Dispersal-based versus niche-based processes as drivers of flea species composition on small mammalian hosts: inferences from species occurrences at large and small scales. Oecologia, 2021, 197, 471-484.	2.0	13
104	Level of Energy Intake Affects the Estrous Cycle in Sundevall's Jird (Meriones crassus). Physiological and Biochemical Zoology, 2000, 73, 257-263.	1.5	12
105	Digesting blood of an auxiliary host in fleas: effect of phylogenetic distance from a principal host. Journal of Experimental Biology, 2012, 215, 1259-1265.	1.7	12
106	Intraspecific variation of body size in a gamasid mite Laelaps clethrionomydis: environment, geography and host dependence. Parasitology Research, 2015, 114, 3767-3774.	1.6	12
107	Body size distribution in flea communities harboured by Siberian small mammals as affected by host species, host sex and scale: scale matters the most. Evolutionary Ecology, 2018, 32, 643-662.	1.2	12

108 Water Balance in Two Species of Desert Fleas, Xenopsylla ramesisandX. conformis(Siphonaptera:) Tj ETQq0 0 0 rgBI /Overlock 10 Tf 50 11

#	Article	IF	CITATIONS
109	Average daily metabolic rate, reproduction and energy allocation during lactation in the Sundevall Jird Meriones crassus. Functional Ecology, 2003, 17, 496-503.	3.6	10
110	Dietary intake and time budget in two desert rodents: a diurnal herbivore, Psammomys obesus, and a nocturnal granivore, Meriones crassus. Mammalia, 2005, 69, .	0.7	10
111	Sex ratio in flea infrapopulations: number of fleas, host gender and host age do not have an effect. Parasitology, 2008, 135, 1133-1141.	1.5	10
112	The effect of host age on feeding performance of fleas. Parasitology, 2011, 138, 1154-1163.	1.5	10
113	Feeding performance of fleas on different host species: is phylogenetic distance between hosts important?. Parasitology, 2012, 139, 60-68.	1.5	10
114	Experimental evidence of negative interspecific interactions among imago fleas: flea and host identities matter. Parasitology Research, 2016, 115, 937-947.	1.6	10
115	Sexual size dimorphism and sex ratio in arthropod ectoparasites: contrasting patterns at different hierarchical scales. International Journal for Parasitology, 2018, 48, 969-978.	3.1	10
116	Multiâ€site generalized dissimilarity modelling reveals drivers of species turnover in ectoparasite assemblages of small mammals across the northern and central Palaearctic. Global Ecology and Biogeography, 2020, 29, 1579-1594.	5.8	10
117	WATER BUDGET DURING REPRODUCTION IN FEMALE COMMON SPINY MICE (ACOMYS CAHIRINUS). Journal of Mammalogy, 2004, 85, 1106-1110.	1.3	9
118	Body size and coexistence in gamasid mites parasitic on small mammals: null model analyses at three hierarchical scales. Ecography, 2013, 36, 508-517.	4.5	9
119	Species and site contributions to <i>\hat{l}^2</i> diversity in fleas parasitic on the Palearctic small mammals: ecology, geography and host species composition matter the most. Parasitology, 2019, 146, 653-661.	1.5	9
120	Species associations in arthropod ectoparasite infracommunities are spatially and temporally variable and affected by environmental factors. Ecological Entomology, 2021, 46, 1254.	2.2	9
121	Density dependence of feeding success in haematophagous ectoparasites. Parasitology, 2007, 134, 1379-1386.	1.5	8
122	Geographical patterns of abundance: testing expectations of the †abundance optimum' model in two taxa of ectoparasitic arthropods. Journal of Biogeography, 2008, 35, 2187-2194.	3.0	8
123	The effect of larval density on pre-imaginal development in two species of desert fleas. Parasitology, 2010, 137, 1925-1935.	1.5	8
124	Do the pattern and strength of species associations in ectoparasite communities conform to biogeographic rules?. Parasitology Research, 2019, 118, 1113-1125.	1.6	8
125	A Small Gerbil That Maximizes Intake of Energy from Low-Energy Food. Journal of Mammalogy, 1997, 78, 158-162.	1.3	7
126	Locomotor response to light and surface angle in three species of desert fleas. Parasitology Research, 2007, 100, 973-982.	1.6	7

#	Article	IF	CITATIONS
127	Infestation experience of a rodent host and offspring viability of fleas: variation among host–parasite associations. Journal of Experimental Zoology, 2010, 313A, 680-689.	1.2	7
128	Effects of host diet and thermal state on feeding performance of the flea <i>Xenopsylla ramesis</i> . Journal of Experimental Biology, 2012, 215, 1435-1441.	1.7	7
129	Energy expenditure for egg production in arthropod ectoparasites: the effect of host species. Parasitology, 2013, 140, 1070-1077.	1.5	7
130	Wolbachia's role in mediating its flea's reproductive success differs according to flea origin. FEMS Microbiology Ecology, 2018, 94, .	2.7	7
131	Harrison's rule scales up to entire parasite assemblages but is determined by environmental factors. Journal of Animal Ecology, 2020, 89, 2888-2895.	2.8	7
132	How are the host spectra of hematophagous parasites shaped over evolutionary time? Random choice vs selection of a phylogenetic lineage. Parasitology Research, 2008, 102, 1157-1164.	1.6	6
133	Ectoparasite performance when feeding on reproducing mammalian females: an unexpected decrease when on pregnant hosts. Journal of Experimental Biology, 2013, 217, 1058-64.	1.7	6
134	Reproductive consequences of host age in a desert flea. Parasitology, 2013, 140, 461-470.	1.5	6
135	Fitness responses to co-infestation in fleas exploiting rodent hosts. Parasitology, 2015, 142, 1535-1542.	1.5	6
136	Revisiting the role of dissimilarity of host communities in driving dissimilarity of ectoparasite assemblages: non-linear <i>vs</i> linear approach. Parasitology, 2017, 144, 1365-1374.	1.5	6
137	Nestedness in assemblages of helminth parasites of bats: a function of geography, environment, or host nestedness?. Parasitology Research, 2018, 117, 1621-1630.	1.6	6
138	Energy requirements, length of digestive tract compartments and body mass in six gerbilline rodents of the Negev Desert. Zoology, 2019, 137, 125715.	1.2	6
139	Partitioning of metabolizable energy intake in sucking altricial and precocial rodent pups. Journal of Zoology, 2006, 269, 502-505.	1.7	5
140	Reproductive success in two species of desert fleas: density dependence and host effect. Journal of Experimental Biology, 2007, 210, 2121-2127.	1.7	5
141	Evidence for a negative fitnessâ^'density relationship between parent density and offspring quality for two Xenopsylla spp. parasitic on desert mammals. Medical and Veterinary Entomology, 2008, 22, 156-166.	1.5	5
142	Milk production of the dam limits the growth rate of Sundevall's jird (Meriones crassus) pups. Mammalian Biology, 2011, 76, 285-289.	1.5	5
143	Spatial variation in the phylogenetic structure of flea assemblages across geographic ranges of small mammalian hosts in the Palearctic. International Journal for Parasitology, 2013, 43, 763-770.	3.1	5
144	Flea fitness is reduced by high fractional concentrations of CO2 that simulate levels found in their hosts' burrows. Journal of Experimental Biology, 2015, 218, 3596-3603.	1.7	5

#	Article	IF	CITATIONS
145	Beta-diversity of ectoparasites at two spatial scales: nested hierarchy, geography and habitat type. Oecologia, 2017, 184, 507-520.	2.0	5
146	Phylogenetic heritability of geographic range size in haematophagous ectoparasites: time of divergence and variation among continents. Parasitology, 2018, 145, 1623-1632.	1.5	5
147	The latitudinal, but not the longitudinal, geographic range positions of haematophagous ectoparasites demonstrate historical signatures. International Journal for Parasitology, 2018, 48, 743-749.	3.1	5
148	Effects of maternal and grandmaternal flea infestation on offspring quality and quantity in a desert rodent: evidence for parasite-mediated transgenerational phenotypic plasticity. International Journal for Parasitology, 2019, 49, 481-488.	3.1	5
149	Spatial and temporal turnover of parasite species and parasite-host interactions: a case study with fleas and gamasid mites parasitic on small mammals. Parasitology Research, 2020, 119, 2093-2104.	1.6	5
150	Parasite counts or parasite incidences? Testing differences with four analyses of infracommunity modelling for seven parasite–host associations. Parasitology Research, 2021, 120, 2569-2584.	1.6	5
151	Dark diversity of flea assemblages of small mammalian hosts: effects of environment, host traits and host phylogeny. International Journal for Parasitology, 2021, , .	3.1	5
152	Age at weaning, immunocompetence and ectoparasite performance in a precocial desert rodent. Journal of Experimental Biology, 2014, 217, 3078-84.	1.7	4
153	Effects of parasitism on host reproductive investment in a rodent–flea system: host litter size matters. Parasitology Research, 2017, 116, 703-710.	1.6	4
154	Reproductive performance in generalist haematophagous ectoparasites: maternal environment, rearing conditions or both?. Parasitology Research, 2019, 118, 2087-2096.	1.6	4
155	Species associations and trait dissimilarity in communities of ectoparasitic arthropods harboured by small mammals at three hierarchical scales. Ecological Entomology, 2020, 45, 321-332.	2.2	4
156	Species coâ€occurrences in ectoparasite infracommunities: Accounting for confounding factors associated with space, time, and host community composition. Ecological Entomology, 2020, 45, 1158-1171.	2.2	4
157	Sex differences in testosterone reactivity and sensitivity in a non-model gerbil. General and Comparative Endocrinology, 2020, 291, 113418.	1.8	4
158	Patterns of zeta diversity in ectoparasite communities harboured by small mammals at three hierarchical scales: taxon-invariance and scale-dependence. Oecologia, 2020, 192, 1057-1071.	2.0	4
159	Adaptation to a novel host and performance tradeâ€off in hostâ€generalist and hostâ€specific insect ectoparasites. Insect Science, 2021, , .	3.0	4
160	The Effect of Host Density on Ectoparasite Distribution: An Example of a Rodent Parasitized by Fleas. Ecology, 2002, 83, 164.	3.2	4
161	Phylogenetic signals in flea-host interaction networks from four biogeographic realms: differences between interactors and the effects of environmental factors. International Journal for Parasitology, 2022, 52, 475-484.	3.1	4
162	Does acquired resistance of rodent hosts affect metabolic rate of fleas?. Journal of Experimental Zoology, 2009, 311A, 389-398.	1.2	3

#	Article	IF	CITATIONS
163	Effect of weaning time on the growth rate and food intake of the spiny mouse pup. Journal of Zoology, 2009, 279, 203-209.	1.7	3
164	Flea infestation does not cause a long-term increase in energy metabolism in <i>Gerbillus nanus</i> . Journal of Experimental Biology, 2011, 214, 3968-3971.	1.7	3
165	Phylogenetic structure of host spectra in Palaearctic fleas: stability versus spatial variation in widespread, generalist species. Parasitology, 2014, 141, 181-191.	1.5	3
166	Szidat's rule re-tested: relationships between flea and host phylogenetic clade ranks in four biogeographic realms. Parasitology, 2016, 143, 723-731.	1.5	3
167	Flea infestation, social contact, and stress in a gregarious rodent species: minimizing the potential parasitic costs of group-living. Parasitology, 2020, 147, 78-86.	1.5	3
168	Contrasting responses of beta diversity components to environmental and hostâ€associated factors in insect ectoparasites. Ecological Entomology, 2020, 45, 594-605.	2.2	3
169	Feeding performance on a novel host: no adaptation over generations and differential patterns in two flea species. Parasitology, 2020, 147, 721-728.	1.5	3
170	Particle size reduction along the digestive tract of fat sand rats (Psammomys obesus) fed four chenopods. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2021, 191, 831-841.	1.5	3
171	Temporal variation of metacommunity structure in arthropod ectoparasites harboured by small mammals: the effects of scale and climatic fluctuations. Parasitology Research, 2022, 121, 537-549.	1.6	3
172	Host reproductive status and reproductive performance of a parasite: offspring quality and trade-offs in a flea parasitic on a rodent. Parasitology, 2014, 141, 914-924.	1.5	2
173	Effects of parasite pressure on parasite mortality and reproductive output in a rodent-flea system: inferring host defense trade-offs. Parasitology Research, 2016, 115, 3337-3344.	1.6	2
174	Parasite performance and host alternation: is there a negative effect in host-specific and host-opportunistic parasites?. Parasitology, 2017, 144, 1107-1116.	1.5	2
175	Colonization of a novel host by fleas: changes in egg production and egg size. Parasitology Research, 2021, 120, 451-459.	1.6	2
176	Effects of ectoparasite infestation during pregnancy on physiological stress and reproductive output in a rodent-flea system. International Journal for Parasitology, 2021, 51, 659-666.	3.1	2
177	Dark host specificity in two ectoparasite taxa: repeatability, parasite traits, and environmental effects. Parasitology Research, 2022, 121, 851.	1.6	2
178	Geographic patterns of diversification: an example with ectoparasitic insects. Biological Journal of the Linnean Society, 0, 95, 807-814.	1.6	1
179	Morphological asymmetry and habitat quality: using fleas and their rodent hosts as a novel experimental system. Journal of Experimental Biology, 2017, 220, 1307-1312.	1.7	1
180	Relationships among different facets of host specificity in three taxa of haematophagous ectoparasites. International Journal for Parasitology, 2017, 47, 961-969.	3.1	1

#	Article	IF	CITATIONS
181	Host phylogeny and ecology, but not host physiology, are the main drivers of (dis)similarity between the host spectra of fleas: application of a novel ordination approach to regional assemblages from four continents. Parasitology, 2022, 149, 124-137.	1.5	1
182	Identification of the missing links in parasite–host networks using the dark diversity concept: a case study with two taxonomic groups of ectoparasitic arthropods and small mammalian hosts. Ecological Entomology, 0, , .	2.2	1
183	Can we predict the success of a parasite to colonise an invasive host?. Parasitology Research, 2018, 117, 2305-2314.	1.6	0
184	Spatial and temporal variation of compositional, functional, and phylogenetic diversity in ectoparasite infracommunities harboured by small mammals. Parasitology, 2021, 148, 685-695.	1.5	0
185	Positive association between experimental cortisol increases and cage-measures of feeding behavior in wild-caught gerbils. Israel Journal of Ecology and Evolution, 2021, 67, 1-9.	0.6	0
186	Fitness consequences of host colonization in two generalist fleas: Contextâ€dependency and the effect of spatial coâ€occurrence. Medical and Veterinary Entomology, 2022, , .	1.5	0