So Fujinami

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/72617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversible Charge/Discharge Reaction of a Ternary Metal Fluoride, Pb ₂ CuF ₆ : A Highly Conductive Cathode Material for Fluoride-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 1002-1009.	2.5	10
2	Correction of height-fluctuation-induced systematic errors in polymers by AFM-based nanomechanical measurements. Polymer Testing, 2021, 93, 106919.	2.3	1
3	Defluorination/fluorination mechanism of Bi0.8Ba0.2F2.8 as a fluoride shuttle battery positive electrode. Journal of Electroanalytical Chemistry, 2021, 895, 115508.	1.9	6
4	Precise Synthesis of a Homogeneous Thermoresponsive Polymer Network Composed of Four-Branched Star Polymers with a Narrow Molecular Weight Distribution. Macromolecules, 2020, 53, 374-386.	2.2	23
5	Cone–Paraboloid Transition of the Johnson–Kendall–Roberts-Type Hyperboloidal Contact. Langmuir, 2020, 36, 11284-11291.	1.6	0
6	Structural Variation in Carbonate Electrolytes by the Addition of Li Salts Studied by Xâ€Ray Total Scattering. Physica Status Solidi (B): Basic Research, 2020, 257, 2000100.	0.7	2
7	Dynamical Heterogeneity near Glass Transition Temperature under Shear Conditions. Physical Review Letters, 2020, 124, 118004.	2.9	16
8	Xâ€Ray Total Scattering of Electrolytes in Liquidâ€Based Fluoride Shuttle Battery: Electrolyte Composition Dependence of the Low―Q Peak. Physica Status Solidi (B): Basic Research, 2020, 257, 2000202.	0.7	4
9	Energy dissipation <i>via</i> the internal fracture of the silica particle network in inorganic/organic double network ion gels. Soft Matter, 2020, 16, 2363-2370.	1.2	12
10	Highly Transparent and Tough Filler Composite Elastomer Inspired by the Cornea. , 2020, 2, 325-330.		21
11	Analytical methods to derive the elastic modulus of soft and adhesive materials from atomic force microcopy force measurements. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 1279-1286.	2.4	25
12	Morphological changes of hydrophobic matrix and hydrophilic ionomers in water-swollen perfluorinated sulfonic acid membranes detected using small-angle X-ray scattering. Polymer, 2019, 180, 121699.	1.8	6
13	Configurationally Constrained Crystallization of Brush Polymers with Poly(ethylene oxide) Side Chains. Macromolecules, 2019, 52, 592-600.	2.2	19
14	Static structure and dynamical behavior of colloidal liquid crystals consisting of hydroxyapatite-based nanorod hybrids. Soft Matter, 2019, 15, 3315-3322.	1.2	12
15	Dispersion of Silica Particles in Rubber During Elongation Revealed by Ultra Small Angle X-ray Scattering and Reverse Monte Carlo Modelling. Nippon Gomu Kyokaishi, 2019, 92, 152-157.	0.0	0
16	In-situ measurement of phospholipid nanodisk adhesion on a solid substrate using neutron reflectometry and atomic force microscopy. Physica B: Condensed Matter, 2018, 551, 222-226.	1.3	9
17	Observation of constraint surface dynamics of polystyrene thin films by functionalization of a silsesquioxane cage. Polymer, 2016, 105, 487-499.	1.8	8
18	Size-dependent elastic modulus of ultrathin polymer films in glassy and rubbery states. Polymer, 2016, 105, 64-71.	1.8	14

So Fujinami

#	Article	IF	CITATIONS
19	Elastic modulus of ultrathin polymer films characterized by atomic force microscopy: The role of probe radius. Polymer, 2016, 87, 114-122.	1.8	34
20	Viscoelasticity of Inhomogeneous Polymers Characterized by Loss Tangent Measurements Using Atomic Force Microscopy. Macromolecules, 2014, 47, 7971-7977.	2.2	37
21	Nano-palpation AFM and its quantitative mechanical property mapping. Microscopy (Oxford, England), 2014, 63, 193-208.	0.7	67
22	Nanorheological Mapping of Rubbers by Atomic Force Microscopy. Macromolecules, 2013, 46, 1916-1922.	2.2	61
23	Mechanical Regulation of Cellular Adhesion onto Honeycomb-Patterned Porous Scaffolds by Altering the Elasticity of Material Surfaces. Biomacromolecules, 2013, 14, 1208-1213.	2.6	53
24	Investigation of Mechanical and Tribological Properties of Polyaniline Brush by Atomic Force Microscopy for Scanning Probe-Based Data Storage. E-Journal of Surface Science and Nanotechnology, 2013, 11, 53-59.	0.1	1
25	Development of Quantitative Evaluation Method for Elastic Modulus of Soft-Materials by Atomic Force Microscopy. Journal of the Vacuum Society of Japan, 2013, 56, 258-266.	0.3	7
26	Alkaline peroxide treatment induces acquired unruly hair by apparently affecting distinct macrofibrils. Journal of Cosmetic Science, 2013, 64, 261-71.	0.1	3
27	Self-assembled porous templates allow pattern transfer to poly(dimethyl siloxane) sheets through surface wrinkling. Polymer Journal, 2012, 44, 573-578.	1.3	16
28	Quantitative Nanomechanical Investigation on Deformation of Poly(lactic acid). Macromolecules, 2012, 45, 8770-8779.	2.2	51
29	Viscoelasticity Analysis of Elastomer Blend Using Force Measurements of Atomic Force Microscope. Kobunshi Ronbunshu, 2012, 69, 435-442.	0.2	3
30	Characterization of morphology and mechanical properties of block copolymers using atomic force microscopy: Effects of processing conditions. Polymer, 2012, 53, 1960-1965.	1.8	31
31	Nanomechanical Mapping on the Deformed Poly(ε-caprolactone). Macromolecules, 2011, 44, 1779-1782.	2.2	19
32	Characterization of Surface Viscoelasticity and Energy Dissipation in a Polymer Film by Atomic Force Microscopy. Macromolecules, 2011, 44, 8693-8697.	2.2	44
33	Novel Viscoelasticity Measurement Method Based on AFM Force Mapping and JKR Analysis. Nippon Gomu Kyokaishi, 2011, 84, 171-175.	0.0	3
34	Structure and dynamics of polymeric materials in nano-scale. Chinese Journal of Polymer Science (English Edition), 2011, 29, 43-52.	2.0	0
35	Evaluation of Viscoelastic Properties of Polymeric Materials by Atomic Force Microscopy. Journal of the Japan Society of Colour Material, 2010, 83, 108-114.	0.0	3
36	Visualization of nanomechanical mapping on polymer nanocomposites by AFM force measurement. Polymer, 2010, 51, 2455-2459.	1.8	58

So Fujinami

#	Article	IF	CITATIONS
37	Production of a cellular structure in carbon nanotube/natural rubber composites revealed by nanomechanical mapping. Carbon, 2010, 48, 3708-3714.	5.4	50
38	Investigation of Reactive Polymerâ^'Polymer Interface Using Nanomechanical Mapping. Macromolecules, 2010, 43, 5521-5523.	2.2	39
39	True Surface Topography and Nanomechanical Mapping Measurements on Block Copolymers with Atomic Force Microscopy. Macromolecules, 2010, 43, 3169-3172.	2.2	47
40	Investigation of True Surface Morphology and Nanomechanical Properties of Poly(styrene- <i>b</i> -ethylene- <i>co</i> -butylene- <i>b</i> -styrene) Using Nanomechanical Mapping: Effects of Composition. Macromolecules, 2010, 43, 9049-9055.	2.2	42
41	Young's Modulus Mapping on Hair Cross-Section by Atomic Force Microscopy. Composite Interfaces, 2009, 16, 1-12.	1.3	12
42	Nanorheological Investigation of Polymeric Surfaces by Atomic Force Microscopy. Composite Interfaces, 2009, 16, 13-25.	1.3	16
43	RECENT PROGRESS OF NANO-MECHANICAL MAPPING. Chinese Journal of Polymer Science (English) Tj ETQq1	1 0.784314 2.0	∙rg₿T /Overl⊂
44	Recent Development of Nanomechanical Property Measurement. Nihon Reoroji Gakkaishi, 2008, 36, 99-106.	0.2	10
45	Evaluation of Surface Properties of Polymeric Materials by Atomic Force Microscopy. Journal of the Japan Society of Colour Material, 2008, 81, 354-360.	0.0	0
46	Title is missing!. Chinese Journal of Polymer Science (English Edition), 2007, 25, 35.	2.0	24
47	Evaluation of Mechanical Properties of Carbon Black Reinforced Natural Rubber by Atomic Force Microscopy. Nippon Gomu Kyokaishi, 2006, 79, 509-515.	0.0	5
48	Nanomechanical Property Analysis of Polymer Surfaces by Atomic Force Microscopy. Hyomen Kagaku, 2006, 27, 530-534.	0.0	7
49	Nanorheology Mapping by Atomic Force Microscopy. Kobunshi Ronbunshu, 2005, 62, 476-487.	0.2	13
50	Nanorheological Analysis of Polymer Surfaces by Atomic Force Microscopy. Japanese Journal of Applied Physics, 2005, 44, 5425-5429.	0.8	54
51	Spherulitic morphology and growth of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 187 Td (4355-4360.	fluoride)/pc 1.8	ly(3-hydroxyd 41
52	Miscibility and crystallization of poly(ethylene succinate)/poly(vinyl phenol) blends. Polymer, 2004, 45, 4515-4521.	1.8	67
53	Nonisothermal Crystallization Kinetics of Poly(butylene succinate) and Poly(ethylene succinate). Polymer Journal, 2004, 36, 642-646.	1.3	81
54	Structure and Properties of Biodegradable Polymer-Based Blends. Macromolecular Symposia, 2004, 216, 255-264.	0.4	10

#	Article	IF	CITATIONS
55	Study of Behavior of Supporting Electrolyte Ion of Fluoride Shuttle Battery Using Anomalous Xâ€Ray Scattering. Advanced Energy and Sustainability Research, 0, , 2200020.	2.8	0