

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7261276/publications.pdf Version: 2024-02-01

|          |                | 4653         | 9090           |
|----------|----------------|--------------|----------------|
| 222      | 22,636         | 85           | 144            |
| papers   | citations      | h-index      | g-index        |
|          |                |              |                |
|          |                |              |                |
|          |                |              |                |
| 233      | 233            | 233          | 12377          |
| all docs | docs citations | times ranked | citing authors |
|          |                |              |                |

ΥΛ ΥΛΝΟ

| #  | Article                                                                                                                                                                                          | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Toward Large-Scale Energy Harvesting by a Nanoparticle-Enhanced Triboelectric Nanogenerator. Nano<br>Letters, 2013, 13, 847-853.                                                                 | 4.5  | 979       |
| 2  | Harmonicâ€Resonatorâ€Based Triboelectric Nanogenerator as a Sustainable Power Source and a<br>Selfâ€Powered Active Vibration Sensor. Advanced Materials, 2013, 25, 6094-6099.                    | 11.1 | 672       |
| 3  | Human Skin Based Triboelectric Nanogenerators for Harvesting Biomechanical Energy and as<br>Self-Powered Active Tactile Sensor System. ACS Nano, 2013, 7, 9213-9222.                             | 7.3  | 667       |
| 4  | Pyroelectric Nanogenerators for Harvesting Thermoelectric Energy. Nano Letters, 2012, 12, 2833-2838.                                                                                             | 4.5  | 639       |
| 5  | Triboelectric Nanogenerator for Harvesting Wind Energy and as Self-Powered Wind Vector Sensor<br>System. ACS Nano, 2013, 7, 9461-9468.                                                           | 7.3  | 524       |
| 6  | Single-Electrode-Based Sliding Triboelectric Nanogenerator for Self-Powered Displacement Vector<br>Sensor System. ACS Nano, 2013, 7, 7342-7351.                                                  | 7.3  | 523       |
| 7  | Progress in nanogenerators for portable electronics. Materials Today, 2012, 15, 532-543.                                                                                                         | 8.3  | 417       |
| 8  | Triboelectric Nanogenerator for Harvesting Vibration Energy in Full Space and as Selfâ€₽owered<br>Acceleration Sensor. Advanced Functional Materials, 2014, 24, 1401-1407.                       | 7.8  | 381       |
| 9  | Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy,<br>2013, 2, 856-862.                                                                            | 8.2  | 337       |
| 10 | BaTiO <sub>3</sub> Nanotubes-Based Flexible and Transparent Nanogenerators. Journal of Physical<br>Chemistry Letters, 2012, 3, 3599-3604.                                                        | 2.1  | 323       |
| 11 | A Selfâ€Powered Triboelectric Nanosensor for Mercury Ion Detection. Angewandte Chemie -<br>International Edition, 2013, 52, 5065-5069.                                                           | 7.2  | 323       |
| 12 | Scavenging Wind Energy by Triboelectric Nanogenerators. Advanced Energy Materials, 2018, 8, 1702649.                                                                                             | 10.2 | 302       |
| 13 | A Singleâ€Electrode Based Triboelectric Nanogenerator as Selfâ€Powered Tracking System. Advanced<br>Materials, 2013, 25, 6594-6601.                                                              | 11.1 | 299       |
| 14 | Triboelectric nanogenerators as flexible power sources. Npj Flexible Electronics, 2017, 1, .                                                                                                     | 5.1  | 295       |
| 15 | Broadband Vibrational Energy Harvesting Based on a Triboelectric Nanogenerator. Advanced Energy<br>Materials, 2014, 4, 1301322.                                                                  | 10.2 | 280       |
| 16 | Enhanced Triboelectric Nanogenerators and Triboelectric Nanosensor Using Chemically Modified<br>TiO <sub>2</sub> Nanomaterials. ACS Nano, 2013, 7, 4554-4560.                                    | 7.3  | 276       |
| 17 | Triboelectric nanogenerator as self-powered active sensors for detecting liquid/gaseous<br>water/ethanol. Nano Energy, 2013, 2, 693-701.                                                         | 8.2  | 250       |
| 18 | A Oneâ€Structureâ€Based Hybridized Nanogenerator for Scavenging Mechanical and Thermal Energies by<br>Triboelectric–Piezoelectric–Pyroelectric Effects. Advanced Materials, 2016, 28, 2881-2887. | 11.1 | 249       |

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Flexible Hybrid Energy Cell for Simultaneously Harvesting Thermal, Mechanical, and Solar Energies.<br>ACS Nano, 2013, 7, 785-790.                                          | 7.3  | 239       |
| 20 | Flexible Pyroelectric Nanogenerators using a Composite Structure of Leadâ€Free KNbO <sub>3</sub><br>Nanowires. Advanced Materials, 2012, 24, 5357-5362.                    | 11.1 | 237       |
| 21 | Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Science Advances, 2020, 6, eabb9083.                                                    | 4.7  | 234       |
| 22 | Hybridized Electromagnetic–Triboelectric Nanogenerator for Scavenging Biomechanical Energy for<br>Sustainably Powering Wearable Electronics. ACS Nano, 2015, 9, 3521-3529. | 7.3  | 233       |
| 23 | Superâ€Flexible Nanogenerator for Energy Harvesting from Gentle Wind and as an Active Deformation<br>Sensor. Advanced Functional Materials, 2013, 23, 2445-2449.           | 7.8  | 232       |
| 24 | Pyroelectric Nanogenerators for Driving Wireless Sensors. Nano Letters, 2012, 12, 6408-6413.                                                                               | 4.5  | 221       |
| 25 | Scanning Probe Study on the Piezotronic Effect in ZnO Nanomaterials and Nanodevices. Advanced Materials, 2012, 24, 4647-4655.                                              | 11.1 | 219       |
| 26 | Photovoltaic–Pyroelectric Coupled Effect Induced Electricity for Selfâ€Powered Photodetector<br>System. Advanced Materials, 2017, 29, 1703694.                             | 11.1 | 217       |
| 27 | Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy, 2013, 2, 1019-1024.                                                     | 8.2  | 212       |
| 28 | Nanowire-composite based flexible thermoelectric nanogenerators and self-powered temperature sensors. Nano Research, 2012, 5, 888-895.                                     | 5.8  | 202       |
| 29 | A flexible ultra-sensitive triboelectric tactile sensor of wrinkled PDMS/MXene composite films for<br>E-skin. Nano Energy, 2021, 81, 105663.                               | 8.2  | 201       |
| 30 | Thermoelectric Nanogenerators Based on Single Sb-Doped ZnO Micro/Nanobelts. ACS Nano, 2012, 6,<br>6984-6989.                                                               | 7.3  | 199       |
| 31 | Efficient Scavenging of Solar and Wind Energies in a Smart City. ACS Nano, 2016, 10, 5696-5700.                                                                            | 7.3  | 193       |
| 32 | Single-Electrode-Based Rotating Triboelectric Nanogenerator for Harvesting Energy from Tires. ACS<br>Nano, 2014, 8, 680-689.                                               | 7.3  | 182       |
| 33 | Triboelectric Nanogenerator as an Active UV Photodetector. Advanced Functional Materials, 2014, 24, 2810-2816.                                                             | 7.8  | 180       |
| 34 | Hybridized Electromagnetic–Triboelectric Nanogenerator for a Self-Powered Electronic Watch. ACS<br>Nano, 2015, 9, 12301-12310.                                             | 7.3  | 179       |
| 35 | Ultrahigh Sensitive Piezotronic Strain Sensors Based on a ZnSnO <sub>3</sub> Nanowire/Microwire.<br>ACS Nano, 2012, 6, 4369-4374.                                          | 7.3  | 176       |
| 36 | Manipulating Nanoscale Contact Electrification by an Applied Electric Field. Nano Letters, 2014, 14, 1567-1572                                                             | 4.5  | 175       |

| #  | Article                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Self-Powered Magnetic Sensor Based on a Triboelectric Nanogenerator. ACS Nano, 2012, 6, 10378-10383.                                                                             | 7.3  | 174       |
| 38 | Flowâ€Driven Triboelectric Generator for Directly Powering a Wireless Sensor Node. Advanced<br>Materials, 2015, 27, 240-248.                                                     | 11.1 | 167       |
| 39 | Hybridized nanogenerator for simultaneously scavenging mechanical and thermal energies by electromagnetic-triboelectric-thermoelectric effects. Nano Energy, 2016, 26, 164-171.  | 8.2  | 167       |
| 40 | Elasto-Aerodynamics-Driven Triboelectric Nanogenerator for Scavenging Air-Flow Energy. ACS Nano,<br>2015, 9, 9554-9563.                                                          | 7.3  | 165       |
| 41 | Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal–Dielectric<br>Case. Advanced Materials, 2019, 31, e1808197.                           | 11.1 | 165       |
| 42 | Ultrathin Nanogenerators as Selfâ€Powered/Active Skin Sensors for Tracking Eye Ball Motion. Advanced<br>Functional Materials, 2014, 24, 1163-1168.                               | 7.8  | 163       |
| 43 | A hybrid energy cell for self-powered water splitting. Energy and Environmental Science, 2013, 6, 2429.                                                                          | 15.6 | 162       |
| 44 | Piezoelectric Material-Polymer Composite Porous Foam for Efficient Dye Degradation via the<br>Piezo-Catalytic Effect. ACS Applied Materials & Interfaces, 2019, 11, 27862-27869. | 4.0  | 156       |
| 45 | Directed Growth and Microwave Absorption Property of Crossed ZnO Netlike Micro-/Nanostructures.<br>Journal of Physical Chemistry C, 2010, 114, 10088-10091.                      | 1.5  | 154       |
| 46 | A chaotic pendulum triboelectric-electromagnetic hybridized nanogenerator for wave energy scavenging and self-powered wireless sensing system. Nano Energy, 2020, 69, 104440.    | 8.2  | 152       |
| 47 | Structure, Performance, and Application of BiFeO3 Nanomaterials. Nano-Micro Letters, 2020, 12, 81.                                                                               | 14.4 | 150       |
| 48 | Single Micro/Nanowire Pyroelectric Nanogenerators as Self-Powered Temperature Sensors. ACS Nano, 2012, 6, 8456-8461.                                                             | 7.3  | 149       |
| 49 | Rotating-disk-based hybridized electromagnetic-triboelectric nanogenerator for scavenging biomechanical energy as a mobile power source. Nano Energy, 2015, 13, 771-780.         | 8.2  | 149       |
| 50 | Triboelectric nanogenerator for harvesting pendulum oscillation energy. Nano Energy, 2013, 2,<br>1113-1120.                                                                      | 8.2  | 148       |
| 51 | Size Dependence of Dielectric Constant in a Single Pencil-Like ZnO Nanowire. Nano Letters, 2012, 12,<br>1919-1922.                                                               | 4.5  | 147       |
| 52 | Direct urrent Triboelectric Generator. Advanced Functional Materials, 2014, 24, 3745-3750.                                                                                       | 7.8  | 147       |
| 53 | Effective energy storage from a hybridized electromagnetic-triboelectric nanogenerator. Nano<br>Energy, 2017, 32, 36-41.                                                         | 8.2  | 147       |
| 54 | Hybridized Electromagnetic–Triboelectric Nanogenerator for Scavenging Air-Flow Energy to<br>Sustainably Power Temperature Sensors. ACS Nano, 2015, 9, 4553-4562.                 | 7.3  | 144       |

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Hybrid Energy Cell for Degradation of Methyl Orange by Self-Powered Electrocatalytic Oxidation.<br>Nano Letters, 2013, 13, 803-808.                                                                                              | 4.5  | 141       |
| 56 | Self-powered ultraviolet photodetector based on a single Sb-doped ZnO nanobelt. Applied Physics<br>Letters, 2010, 97, .                                                                                                          | 1.5  | 139       |
| 57 | Fully Enclosed Triboelectric Nanogenerators for Applications in Water and Harsh Environments.<br>Advanced Energy Materials, 2013, 3, 1563-1568.                                                                                  | 10.2 | 137       |
| 58 | Piezotronic Effect on the Output Voltage of P3HT/ZnO Micro/Nanowire Heterojunction Solar Cells.<br>Nano Letters, 2011, 11, 4812-4817.                                                                                            | 4.5  | 135       |
| 59 | Piezo-phototronics effect on nano/microwire solar cells. Energy and Environmental Science, 2012, 5, 6850.                                                                                                                        | 15.6 | 135       |
| 60 | Applicability of triboelectric generator over a wide range of temperature. Nano Energy, 2014, 4, 150-156.                                                                                                                        | 8.2  | 135       |
| 61 | A Oneâ€Structureâ€Based Piezoâ€Triboâ€Pyroâ€Photoelectric Effects Coupled Nanogenerator for<br>Simultaneously Scavenging Mechanical, Thermal, and Solar Energies. Advanced Energy Materials, 2017,<br>7, 1601852.                | 10.2 | 134       |
| 62 | Simultaneously harvesting mechanical and chemical energies by a hybrid cell for self-powered biosensors and personal electronics. Energy and Environmental Science, 2013, 6, 1744.                                               | 15.6 | 129       |
| 63 | Enhanced self-powered UV photoresponse of ferroelectric BaTiO3 materials by pyroelectric effect.<br>Nano Energy, 2017, 40, 352-359.                                                                                              | 8.2  | 127       |
| 64 | Silicon-Based Hybrid Energy Cell for Self-Powered Electrodegradation and Personal Electronics. ACS<br>Nano, 2013, 7, 2808-2813.                                                                                                  | 7.3  | 125       |
| 65 | Hybrid electromagnetic–triboelectric nanogenerator for harvesting vibration energy. Nano Research,<br>2015, 8, 3272-3280.                                                                                                        | 5.8  | 123       |
| 66 | Self-Powered Wireless Smart Sensor Node Enabled by an Ultrastable, Highly Efficient, and<br>Superhydrophobic-Surface-Based Triboelectric Nanogenerator. ACS Nano, 2016, 10, 9044-9052.                                           | 7.3  | 123       |
| 67 | Electret Film-Enhanced Triboelectric Nanogenerator Matrix for Self-Powered Instantaneous Tactile<br>Imaging. ACS Applied Materials & Interfaces, 2014, 6, 3680-3688.                                                             | 4.0  | 118       |
| 68 | Hybrid energy cells for simultaneously harvesting multi-types of energies. Nano Energy, 2015, 14,<br>245-256.                                                                                                                    | 8.2  | 116       |
| 69 | Enhanced Photocurrent in BiFeO <sub>3</sub> Materials by Coupling Temperature and<br>Thermo-Phototronic Effects for Self-Powered Ultraviolet Photodetector System. ACS Applied<br>Materials & Interfaces, 2018, 10, 13712-13719. | 4.0  | 115       |
| 70 | Selfâ€Powered UV Photodetector Array Based on P3HT/ZnO Nanowire Array Heterojunction. Advanced<br>Materials Technologies, 2017, 2, 1700208.                                                                                      | 3.0  | 114       |
| 71 | Conjuncted Pyroâ€Piezoelectric Effect for Selfâ€Powered Simultaneous Temperature and Pressure<br>Sensing. Advanced Materials, 2019, 31, e1902831.                                                                                | 11.1 | 113       |
| 72 | Thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive self-powered strain sensor system. Nano Energy, 2019, 56, 25-32.                                                     | 8.2  | 113       |

| #  | Article                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Hybrid energy cell for simultaneously harvesting wind, solar, and chemical energies. Nano Research, 2014, 7, 1631-1639.                                                        | 5.8  | 111       |
| 74 | Unity Convoluted Design of Solid Liâ€lon Battery and Triboelectric Nanogenerator for Selfâ€Powered<br>Wearable Electronics. Advanced Energy Materials, 2017, 7, 1701629.       | 10.2 | 110       |
| 75 | Hybrid energy cell for harvesting mechanical energy from one motion using two approaches. Nano<br>Energy, 2015, 11, 162-170.                                                   | 8.2  | 102       |
| 76 | Triboelectric liquid volume sensor for self-powered lab-on-chip applications. Nano Energy, 2016, 23, 80-88.                                                                    | 8.2  | 101       |
| 77 | Fully Enclosed Cylindrical Single-Electrode-Based Triboelectric Nanogenerator. ACS Applied Materials<br>& Interfaces, 2014, 6, 553-559.                                        | 4.0  | 100       |
| 78 | Enhanced P3HT/ZnO Nanowire Array Solar Cells by Pyro-phototronic Effect. ACS Nano, 2016, 10,<br>10331-10338.                                                                   | 7.3  | 100       |
| 79 | Solar-powered nanostructured biopolymer hygroscopic aerogels for atmospheric water harvesting.<br>Nano Energy, 2021, 80, 105569.                                               | 8.2  | 99        |
| 80 | Performance and service behavior in 1-D nanostructured energy conversion devices. Nano Energy, 2015, 14, 30-48.                                                                | 8.2  | 96        |
| 81 | Celluloseâ€Based Fully Green Triboelectric Nanogenerators with Output Power Density of 300 W<br>m <sup>â^²2</sup> . Advanced Materials, 2020, 32, e2002824.                    | 11.1 | 93        |
| 82 | Interfacial electronic structure engineering on molybdenum sulfide for robust dual-pH hydrogen<br>evolution. Nature Communications, 2021, 12, 5260.                            | 5.8  | 93        |
| 83 | Nanoâ€Newton Transverse Force Sensor Using a Vertical GaN Nanowire based on the Piezotronic Effect.<br>Advanced Materials, 2013, 25, 883-888.                                  | 11.1 | 89        |
| 84 | Triboelectrificationâ€Enabled Selfâ€Charging Lithiumâ€lon Batteries. Advanced Energy Materials, 2017, 7,<br>1700103.                                                           | 10.2 | 89        |
| 85 | Dual-polarity response in self-powered ZnO NWs/Sb2Se3 film heterojunction photodetector array for optical communication. Nano Energy, 2020, 68, 104312.                        | 8.2  | 89        |
| 86 | Photovoltaic–Pyroelectric Coupled Effect Based Nanogenerators for Selfâ€Powered Photodetector<br>System. Advanced Materials Interfaces, 2018, 5, 1701189.                      | 1.9  | 88        |
| 87 | Graphene–Polymer Nanocompositeâ€Based Redoxâ€Induced Electricity for Flexible Selfâ€Powered Strain<br>Sensors. Advanced Energy Materials, 2018, 8, 1800961.                    | 10.2 | 88        |
| 88 | Photocurrent Polarity Controlled by Light Wavelength in Self-Powered ZnO Nanowires/SnS<br>Photodetector System. IScience, 2018, 1, 16-23.                                      | 1.9  | 87        |
| 89 | Piezoelectric Materials for Controlling Electro-Chemical Processes. Nano-Micro Letters, 2020, 12, 149.                                                                         | 14.4 | 87        |
| 90 | Polyimide/Graphene Nanocomposite Foamâ€Based Windâ€Driven Triboelectric Nanogenerator for<br>Selfâ€Powered Pressure Sensor. Advanced Materials Technologies, 2019, 4, 1800723. | 3.0  | 86        |

| #   | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors. Nano<br>Energy, 2021, 84, 105919.                                                                                                            | 8.2  | 80        |
| 92  | A Oneâ€&tructureâ€Based Multieffects Coupled Nanogenerator for Simultaneously Scavenging Thermal,<br>Solar, and Mechanical Energies. Advanced Science, 2018, 5, 1700622.                                                                  | 5.6  | 79        |
| 93  | Enhancing Photocurrent of Radially Polarized Ferroelectric BaTiO3 Materials by<br>Ferro-Pyro-Phototronic Effect. IScience, 2018, 3, 208-216.                                                                                              | 1.9  | 79        |
| 94  | Fully enclosed hybrid electromagnetic–triboelectric nanogenerator to scavenge vibrational energy.<br>Nano Research, 2016, 9, 2226-2233.                                                                                                   | 5.8  | 78        |
| 95  | Conductive Fabric-Based Stretchable Hybridized Nanogenerator for Scavenging Biomechanical Energy.<br>ACS Nano, 2016, 10, 4728-4734.                                                                                                       | 7.3  | 78        |
| 96  | Boosted photocurrent in ferroelectric BaTiO3 materials via two dimensional planar-structured contact configurations. Nano Energy, 2018, 50, 417-424.                                                                                      | 8.2  | 77        |
| 97  | Recent Advances in Pyroelectric Materials and Applications. Small, 2021, 17, e2103960.                                                                                                                                                    | 5.2  | 77        |
| 98  | Piezo–pyro–photoelectric effects induced coupling enhancement of charge quantity in<br>BaTiO <sub>3</sub> materials for simultaneously scavenging light and vibration energies. Energy and<br>Environmental Science, 2019, 12, 1231-1240. | 15.6 | 74        |
| 99  | Design, Performance, and Application of Thermoelectric Nanogenerators. Small, 2019, 15, e1805241.                                                                                                                                         | 5.2  | 74        |
| 100 | Improvement of the performance of dye-sensitized solar cells using Sn-doped ZnO nanoparticles.<br>Journal of Power Sources, 2010, 195, 5806-5809.                                                                                         | 4.0  | 73        |
| 101 | Differences and Similarities of Photocatalysis and Electrocatalysis in Two-Dimensional<br>Nanomaterials: Strategies, Traps, Applications and Challenges. Nano-Micro Letters, 2021, 13, 156.                                               | 14.4 | 71        |
| 102 | Transparent triboelectric nanogenerator-induced high voltage pulsed electric field for a self-powered handheld printer. Nano Energy, 2018, 44, 468-475.                                                                                   | 8.2  | 70        |
| 103 | A coupled photo-piezo-catalytic effect in a BST-PDMS porous foam for enhanced dye wastewater degradation. Nano Energy, 2020, 77, 105305.                                                                                                  | 8.2  | 70        |
| 104 | Wireless Monitoring of Small Strains in Intelligent Robots via a Joule Heating Effect in Stretchable<br>Graphene–Polymer Nanocomposites. Advanced Functional Materials, 2020, 30, 1910809.                                                | 7.8  | 68        |
| 105 | Boosting Photocurrent via Heating BiFeO <sub>3</sub> Materials for Enhanced Selfâ€Powered UV<br>Photodetectors. Advanced Functional Materials, 2020, 30, 1906232.                                                                         | 7.8  | 67        |
| 106 | Standard and figure-of-merit for quantifying the performance of pyroelectric nanogenerators. Nano<br>Energy, 2019, 55, 534-540.                                                                                                           | 8.2  | 65        |
| 107 | Direct Current Triboelectric Nanogenerators. Advanced Energy Materials, 2020, 10, 2002756.                                                                                                                                                | 10.2 | 64        |
| 108 | Controllable fabrication and electromechanical characterization of single crystalline Sb-doped ZnO<br>nanobelts. Applied Physics Letters, 2008, 92, .                                                                                     | 1.5  | 63        |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Ag Nanoparticle-Based Triboelectric Nanogenerator To Scavenge Wind Energy for a Self-Charging<br>Power Unit. ACS Applied Materials & Interfaces, 2017, 9, 43716-43723.                           | 4.0  | 62        |
| 110 | Stretching-enhanced triboelectric nanogenerator for efficient wind energy scavenging and ultrasensitive strain sensing. Nano Energy, 2020, 75, 104920.                                           | 8.2  | 62        |
| 111 | Multi-Band Sensing for Dielectric Property of Chemicals Using Metamaterial Integrated Microfluidic<br>Sensor. Scientific Reports, 2018, 8, 14801.                                                | 1.6  | 60        |
| 112 | Achieving Lightâ€Induced Ultrahigh Pyroelectric Charge Density Toward Selfâ€Powered UV Light<br>Detection. Advanced Electronic Materials, 2019, 5, 1800413.                                      | 2.6  | 59        |
| 113 | A self-powered and self-functional tracking system based on triboelectric-electromagnetic hybridized blue energy harvesting module. Nano Energy, 2020, 72, 104684.                               | 8.2  | 58        |
| 114 | One-structure-based multi-effects coupled nanogenerators for flexible and self-powered multi-functional coupled sensor systems. Nano Energy, 2020, 71, 104632.                                   | 8.2  | 58        |
| 115 | High-performance piezoelectric gate diode of a single polar-surface dominated ZnO nanobelt.<br>Nanotechnology, 2009, 20, 125201.                                                                 | 1.3  | 55        |
| 116 | Boosted photocurrent via cooling ferroelectric BaTiO3 materials for self-powered 405â€⁻nm light<br>detection. Nano Energy, 2019, 60, 95-102.                                                     | 8.2  | 55        |
| 117 | Nanogenerator-Based Self-Charging Energy Storage Devices. Nano-Micro Letters, 2019, 11, 19.                                                                                                      | 14.4 | 53        |
| 118 | Flexible piezoresistive strain sensor based on single Sb-doped ZnO nanobelts. Applied Physics Letters, 2010, 97, 223107.                                                                         | 1.5  | 52        |
| 119 | Wind-Driven Triboelectric Nanogenerators for Scavenging Biomechanical Energy. ACS Applied Energy<br>Materials, 2018, 1, 4269-4276.                                                               | 2.5  | 52        |
| 120 | A Shared-Electrode-Based Hybridized Electromagnetic-Triboelectric Nanogenerator. ACS Applied<br>Materials & Interfaces, 2016, 8, 19573-19578.                                                    | 4.0  | 51        |
| 121 | A high-performance transparent and flexible triboelectric nanogenerator based on hydrophobic composite films. Nano Energy, 2020, 75, 104918.                                                     | 8.2  | 51        |
| 122 | Ferroelectric Photovoltaic Materials and Devices. Advanced Functional Materials, 2022, 32, .                                                                                                     | 7.8  | 48        |
| 123 | Thermoâ€Phototronic Effect Enhanced InP/ZnO Nanorod Heterojunction Solar Cells for Selfâ€Powered<br>Wearable Electronics. Advanced Functional Materials, 2017, 27, 1703331.                      | 7.8  | 46        |
| 124 | A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems. Nanoscale, 2018, 10, 19781-19790. | 2.8  | 46        |
| 125 | Recent Progress in Hybridized Nanogenerators for Energy Scavenging. IScience, 2020, 23, 101689.                                                                                                  | 1.9  | 46        |
| 126 | Enhancing the Output Performance of Triboelectric Nanogenerator via Gratingâ€Electrodeâ€Enabled<br>Surface Plasmon Excitation. Advanced Energy Materials, 2019, 9, 1902725.                      | 10.2 | 45        |

| #   | Article                                                                                                                                                                    | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Buckminsterfullerene hybridized zinc oxide tetrapods: defects and charge transfer induced optical and electrical response. Nanoscale, 2018, 10, 10050-10062.               | 2.8  | 44        |
| 128 | Enhanced photocurrent via ferro-pyro-phototronic effect in ferroelectric BaTiO3 materials for a self-powered flexible photodetector system. Nano Energy, 2020, 77, 105152. | 8.2  | 44        |
| 129 | Transverse piezoelectric field-effect transistor based on single ZnO nanobelts. Physical Chemistry<br>Chemical Physics, 2010, 12, 12415.                                   | 1.3  | 43        |
| 130 | Linear-grating hybridized electromagnetic-triboelectric nanogenerator for sustainably powering portable electronics. Nano Research, 2016, 9, 974-984.                      | 5.8  | 42        |
| 131 | Enhanced Selfâ€Powered UV Photoresponse of Ferroelectric PZT Materials by Pyroelectric Effect.<br>Advanced Materials Technologies, 2017, 2, 1700221.                       | 3.0  | 42        |
| 132 | Implanting a solid Li-ion battery into a triboelectric nanogenerator for simultaneously scavenging and storing wind energy. Nano Energy, 2017, 41, 210-216.                | 8.2  | 42        |
| 133 | Thermo-photoelectric coupled effect induced electricity in N-type SnSe:Br single crystals for enhanced self-powered photodetectors. Nano Energy, 2019, 66, 104111.         | 8.2  | 42        |
| 134 | Effective polarization of ferroelectric materials by using a triboelectric nanogenerator to scavenge wind energy. Nano Energy, 2018, 53, 622-629.                          | 8.2  | 41        |
| 135 | Photovoltaic–Pyroelectric–Piezoelectric Coupled Effect Induced Electricity for Selfâ€Powered<br>Coupled Sensing. Advanced Electronic Materials, 2019, 5, 1900195.          | 2.6  | 41        |
| 136 | Superelastic Graphene Nanocomposite for High Cycle-Stability Water Capture–Release under Sunlight.<br>ACS Applied Materials & Interfaces, 2019, 11, 15616-15622.           | 4.0  | 41        |
| 137 | Frequency and voltage response of a wind-driven fluttering triboelectric nanogenerator. Scientific Reports, 2019, 9, 5543.                                                 | 1.6  | 41        |
| 138 | Human Body Constituted Triboelectric Nanogenerators as Energy Harvesters, Code Transmitters, and<br>Motion Sensors. ACS Applied Energy Materials, 2018, 1, 2955-2960.      | 2.5  | 39        |
| 139 | Sensing body motions based on charges generated on the body. Nano Energy, 2019, 63, 103842.                                                                                | 8.2  | 39        |
| 140 | Photo-thermoelectric effect induced electricity in stretchable graphene-polymer nanocomposites for ultrasensitive strain sensing. Nano Research, 2019, 12, 2982-2987.      | 5.8  | 39        |
| 141 | Superhydrophobic surfaces-based redox-induced electricity from water droplets for self-powered wearable electronics. Nano Energy, 2019, 56, 547-554.                       | 8.2  | 36        |
| 142 | 2D Nanomaterials for Effective Energy Scavenging. Nano-Micro Letters, 2021, 13, 82.                                                                                        | 14.4 | 36        |
| 143 | A Nanostructured Moistureâ€Absorbing Gel for Fast and Large cale Passive Dehumidification. Advanced<br>Materials, 2022, 34, e2200865.                                      | 11.1 | 36        |
| 144 | Stretchable CNTsâ€Ecoflex Composite as Variableâ€Transmittance Skin for Ultrasensitive Strain Sensing.<br>Advanced Materials Technologies, 2018, 3, 1800248.               | 3.0  | 35        |

| #   | Article                                                                                                                                                                                          | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Configuration design of BiFeO3 photovoltaic devices for self-powered electronic watch. Nano<br>Energy, 2019, 64, 103909.                                                                         | 8.2  | 35        |
| 146 | Optically Controlled Abnormal Photovoltaic Current Modulation with Temperature in BiFeO <sub>3</sub> . Advanced Electronic Materials, 2019, 5, 1800791.                                          | 2.6  | 35        |
| 147 | The triboelectricity of the human body. Nano Energy, 2021, 86, 106041.                                                                                                                           | 8.2  | 35        |
| 148 | Electrical breakdown of ZnO nanowires in metal-semiconductor-metal structure. Applied Physics<br>Letters, 2010, 96, .                                                                            | 1.5  | 34        |
| 149 | Antibacterial triboelectric membrane-based highly-efficient self-charging supercapacitors. Nano<br>Energy, 2017, 36, 30-37.                                                                      | 8.2  | 33        |
| 150 | Structure Design and Performance of Hybridized Nanogenerators. Advanced Functional Materials, 2019, 29, 1806435.                                                                                 | 7.8  | 30        |
| 151 | Dual-polarity output response-based photoelectric devices. Cell Reports Physical Science, 2021, 2, 100418.                                                                                       | 2.8  | 30        |
| 152 | Multifunctional Chemical Sensing Platform Based on Dualâ€Resonant Infrared Plasmonic Perfect<br>Absorber for On hip Detection of Poly(ethyl cyanoacrylate). Advanced Science, 2021, 8, e2101879. | 5.6  | 29        |
| 153 | Laser-Etched Stretchable Graphene–Polymer Composite Array for Sensitive Strain and Viscosity<br>Sensors. Nano-Micro Letters, 2019, 11, 99.                                                       | 14.4 | 28        |
| 154 | Enhanced Power Generation from the Interaction between Sweat and Electrodes for Human Health<br>Monitoring. ACS Energy Letters, 2020, 5, 3708-3717.                                              | 8.8  | 28        |
| 155 | Scavenging Energy Sources Using Ferroelectric Materials. Advanced Functional Materials, 2021, 31, 2100905.                                                                                       | 7.8  | 28        |
| 156 | PtIr/ZnO nanowire/pentacene hybrid back-to-back double diodes. Applied Physics Letters, 2008, 93, 133101.                                                                                        | 1.5  | 26        |
| 157 | A Triboelectric Nanogenerator Exploiting the Bernoulli Effect for Scavenging Wind Energy. Cell<br>Reports Physical Science, 2020, 1, 100207.                                                     | 2.8  | 26        |
| 158 | Electrical bistability and negative differential resistance in single Sb-doped ZnO nanobelts/SiOx/p-Si<br>heterostructured devices. Applied Physics Letters, 2010, 96, .                         | 1.5  | 25        |
| 159 | Mechanical and longitudinal electromechanical properties of Sb-doped ZnO nanobelts.<br>CrystEngComm, 2010, 12, 2005.                                                                             | 1.3  | 25        |
| 160 | Piezoelectric and ferroelectric properties of Ba0.9Ca0.1Ti0.9Sn0.1O3 lead-free ceramics with La2O3 addition. Journal of Alloys and Compounds, 2017, 704, 193-196.                                | 2.8  | 25        |
| 161 | Integrating a Microwave Resonator and a Microchannel with an Immunochromatographic Strip for<br>Stable and Quantitative Biodetection. ACS Applied Materials & Interfaces, 2019, 11, 14630-14639. | 4.0  | 25        |
| 162 | A Nonresonant Hybridized Electromagnetic-Triboelectric Nanogenerator for Irregular and Ultralow<br>Frequency Blue Energy Harvesting. Research, 2021, 2021, 5963293.                              | 2.8  | 24        |

| #   | Article                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Self-Powered Room-Temperature Ethanol Sensor Based on Brush-Shaped Triboelectric Nanogenerator.<br>Research, 2021, 2021, 8564780.                                                 | 2.8 | 24        |
| 164 | Floating robotic insects to obtain electric energy from water surface for realizing some self-powered functions. Nano Energy, 2019, 63, 103810.                                   | 8.2 | 23        |
| 165 | Selfâ€Powered Wireless Monitoring of Obstacle Position and State in Gas Pipe via Flowâ€Driven<br>Triboelectric Nanogenerators. Advanced Materials Technologies, 2020, 5, 2000466. | 3.0 | 23        |
| 166 | Moisture induced electricity for self-powered microrobots. Nano Energy, 2021, 90, 106499.                                                                                         | 8.2 | 23        |
| 167 | Ultraâ€Stable Electret Nanogenerator to Scavenge Highâ€Speed Rotational Energy for Selfâ€Powered<br>Electronics. Advanced Materials Technologies, 2017, 2, 1600233.               | 3.0 | 22        |
| 168 | Conjuncted photo-thermoelectric effect in ZnO–graphene nanocomposite foam for self-powered simultaneous temperature and light sensing. Scientific Reports, 2020, 10, 11864.       | 1.6 | 22        |
| 169 | Defect states contributed nanoscale contact electrification at ZnO nanowires packed film surfaces.<br>Nano Energy, 2021, 79, 105406.                                              | 8.2 | 22        |
| 170 | Biopolymer Nanofibers for Nanogenerator Development. Research, 2021, 2021, 1843061.                                                                                               | 2.8 | 22        |
| 171 | Fiber-Shaped Triboiontronic Electrochemical Transistor. Research, 2021, 2021, 9840918.                                                                                            | 2.8 | 22        |
| 172 | Highly Stretchable Variableâ€Transmittance Skin for Ultrasensitive and Wearable Strain Sensing.<br>Advanced Materials Technologies, 2017, 2, 1700161.                             | 3.0 | 21        |
| 173 | Chemo-phototronic effect induced electricity for enhanced self-powered photodetector system based on ZnO nanowires. Nano Energy, 2021, 89, 106449.                                | 8.2 | 21        |
| 174 | Multi-dimensional, transparent and foldable cellulose-based triboelectric nanogenerator for touching password recognition. Nano Energy, 2022, 98, 107307.                         | 8.2 | 20        |
| 175 | Enhanced photocurrent in ferroelectric Bi0.5Na0.5TiO3 materials via ferro-pyro-phototronic effect.<br>Nano Energy, 2022, 98, 107312.                                              | 8.2 | 20        |
| 176 | Fabrication, structural characterization, and photoluminescence of Ga-doped ZnO nanobelts. Applied<br>Physics A: Materials Science and Processing, 2009, 94, 799-803.             | 1.1 | 19        |
| 177 | Synthesis and transverse electromechanical characterization of single crystalline ZnO nanoleaves.<br>Physical Chemistry Chemical Physics, 2010, 12, 552-555.                      | 1.3 | 19        |
| 178 | Thermoâ€Phototronicâ€Effectâ€Enhanced Photodetectors Based on Porous ZnO Materials. Advanced<br>Electronic Materials, 2019, 5, 1900776.                                           | 2.6 | 19        |
| 179 | High intensity, plasma-induced emission from large area ZnO nanorod array cathodes. Physics of Plasmas, 2008, 15, 114505.                                                         | 0.7 | 18        |
| 180 | Electric Field Stiffening Effect in <i>c</i> -Oriented Aluminum Nitride Piezoelectric Thin Films. ACS<br>Applied Materials & Interfaces, 2018, 10, 1819-1827.                     | 4.0 | 18        |

| #   | Article                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Redox-induced electricity for energy scavenging and self-powered sensors. Journal of Materials<br>Chemistry A, 2021, 9, 19116-19148.                                 | 5.2  | 18        |
| 182 | Ferroelectric Materials for Solar Energy Scavenging and Photodetectors. Advanced Optical Materials, 2022, 10, 2101741.                                               | 3.6  | 18        |
| 183 | Dielectric and ferroelectric properties of Ba0.97-xCaxLa0.03Ti0.9Sn0.1O3 lead-free ceramics. Journal of Alloys and Compounds, 2017, 704, 141-145.                    | 2.8  | 17        |
| 184 | On the evaluation of output voltages for quantifying the performance of pyroelectric energy harvesters. Nano Energy, 2021, 86, 106045.                               | 8.2  | 17        |
| 185 | Selfâ€Powered Stretchable Sensor Arrays Exhibiting Magnetoelasticity for Realâ€Time Human–Machine<br>Interaction. Advanced Materials, 2023, 35, .                    | 11.1 | 17        |
| 186 | Room temperature negative differential resistance based on a single ZnO nanowire/CuPc nanofilm hybrid heterojunction. Applied Physics Letters, 2010, 97, 263118.     | 1.5  | 16        |
| 187 | Boosting Output Performance of Triboelectric Nanogenerator via Mutual Coupling Effects Enabled<br>Photonâ€Carriers and Plasmon. Advanced Science, 2022, 9, e2103957. | 5.6  | 16        |
| 188 | Localized ultraviolet photoresponse in single bent ZnO micro/nanowires. Applied Physics Letters, 2010, 97, 133112.                                                   | 1.5  | 15        |
| 189 | Efficient water scavenging by cooling superhydrophobic surfaces to obtain jumping water droplets from air. Scientific Reports, 2019, 9, 13784.                       | 1.6  | 15        |
| 190 | A universal managing circuit with stabilized voltage for maintaining safe operation of self-powered electronics system. IScience, 2021, 24, 102502.                  | 1.9  | 15        |
| 191 | Growth, Properties and Applications of Bi0.5Na0.5TiO3 Ferroelectric Nanomaterials. Nanomaterials, 2021, 11, 1724.                                                    | 1.9  | 15        |
| 192 | Ferroelectric Materials Based Coupled Nanogenerators. Nanoenergy Advances, 2021, 1, 131-180.                                                                         | 3.6  | 15        |
| 193 | Coupling Enhancement of Photo-Thermoelectric Conversion in a Lateral ZnO Nanowire Array. ACS<br>Applied Energy Materials, 2019, 2, 7647-7654.                        | 2.5  | 14        |
| 194 | Electromagnetic–Triboelectric Hybridized Nanogenerators. Energies, 2021, 14, 6219.                                                                                   | 1.6  | 14        |
| 195 | Utilising the triboelectricity of the human body for human-computer interactions. Nano Energy, 2022, 100, 107503.                                                    | 8.2  | 14        |
| 196 | Scavenging low-speed breeze wind energy using a triboelectric nanogenerator installed inside a square variable diameter channel. Nano Energy, 2022, 100, 107453.     | 8.2  | 14        |
| 197 | Negative differential resistance in PtIr/ZnO ribbon/sexithiophen hybrid double diodes. Applied Physics<br>Letters, 2009, 95, 123112.                                 | 1.5  | 13        |
| 198 | Hybridized nanogenerators for effectively scavenging mechanical and solar energies. IScience, 2021, 24, 102415.                                                      | 1.9  | 13        |

| #   | Article                                                                                                                                                                                                                                   | IF               | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 199 | Nanogeneratorsâ€Based Selfâ€Powered Sensors. Advanced Materials Technologies, 2022, 7, .                                                                                                                                                  | 3.0              | 13        |
| 200 | Electrical and mechanical coupling nanodamage in single ZnO nanobelts. Applied Physics Letters, 2010, 96, .                                                                                                                               | 1.5              | 12        |
| 201 | Electric-induced nanodamage in single ZnO nanowires. Journal of Applied Physics, 2009, 105, .                                                                                                                                             | 1.1              | 10        |
| 202 | Low-Temperature Induced Enhancement of Photoelectric Performance in Semiconducting Nanomaterials. Nanomaterials, 2021, 11, 1131.                                                                                                          | 1.9              | 10        |
| 203 | Emerging nanogenerators: Powering the Internet of Things by high entropy energy. IScience, 2021, 24, 102358.                                                                                                                              | 1.9              | 10        |
| 204 | Perovskite Oxide Ferroelectric Thin Films. Advanced Electronic Materials, 2022, 8, .                                                                                                                                                      | 2.6              | 10        |
| 205 | Ferroelectric BaTiO <sub>3</sub> Based Multiâ€Effects Coupled Materials and Devices. Advanced<br>Electronic Materials, 2022, 8, .                                                                                                         | 2.6              | 10        |
| 206 | High intensity, plasma-induced electron emission from large area carbon nanotube array cathodes.<br>Applied Physics Letters, 2010, 96, 073109.                                                                                            | 1.5              | 9         |
| 207 | Selfâ€Powered Lightâ€Temperature Dualâ€Parameter Sensor Using Nbâ€Doped SrTiO <sub>3</sub> Materials Via<br>Thermoâ€Phototronic Effect. Advanced Functional Materials, 2021, 31, 2010439.                                                 | <sup>a</sup> 7.8 | 9         |
| 208 | Multieffect Coupled Nanogenerators. Research, 2020, 2020, 6503157.                                                                                                                                                                        | 2.8              | 9         |
| 209 | Thermoâ€Phototronic Effect Induced Electricity in Long Semiconducting ZnO Materials for<br>Selfâ€Powered Light and Temperature Sensors. Advanced Materials Technologies, 2020, 5, 2000176.                                                | 3.0              | 8         |
| 210 | Lever-inspired triboelectric nanogenerator with ultra-high output for pulse monitoring. Nano<br>Energy, 2022, 97, 107159.                                                                                                                 | 8.2              | 8         |
| 211 | Size dependence of transverse electric transport in single ZnO nanoneedles. Applied Physics Letters,<br>2010, 96, 152101.                                                                                                                 | 1.5              | 6         |
| 212 | Arcâ€&haped Triboelectric Nanogenerator for Wind Energy Harvesting. Energy Technology, 2022, 10, .                                                                                                                                        | 1.8              | 6         |
| 213 | Investigating the Electrical Properties of Monolayer and Bilayer hâ€BNs via Atomic Force Microscopy.<br>Advanced Materials Interfaces, 2021, 8, 2100447.                                                                                  | 1.9              | 5         |
| 214 | Controlling photocurrent direction with light. Nature Electronics, 2021, 4, 631-632.                                                                                                                                                      | 13.1             | 5         |
| 215 | Flexible, Electrically Conductive, Nanostructured, Asymmetric Aerogel Films for Lithium–Sulfur<br>Batteries. ACS Applied Materials & Interfaces, 2021, 13, 59174-59184.                                                                   | 4.0              | 5         |
| 216 | Triboelectric Nanogenerators: Enhancing the Output Performance of Triboelectric Nanogenerator<br>via Gratingâ€Electrodeâ€Enabled Surface Plasmon Excitation (Adv. Energy Mater. 44/2019). Advanced<br>Energy Materials, 2019, 9, 1970177. | 10.2             | 4         |

| #   | Article                                                                                                                                                                         | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | Nanoenergy Advances—A New Open Access Journal to Report Nanoenergy Materials and Devices.<br>Nanoenergy Advances, 2021, 1, 1-2.                                                 | 3.6  | 4         |
| 218 | Sensors: Conjuncted Pyroâ€Piezoelectric Effect for Selfâ€Powered Simultaneous Temperature and<br>Pressure Sensing (Adv. Mater. 36/2019). Advanced Materials, 2019, 31, 1970257. | 11.1 | 3         |
| 219 | DCâ€TENGs: Direct Current Triboelectric Nanogenerators (Adv. Energy Mater. 45/2020). Advanced Energy<br>Materials, 2020, 10, 2070186.                                           | 10.2 | 1         |
| 220 | Field Emission Properties of Large Area Carbon Nanotube Cathodes in DC and Pulse Modes. Materials<br>Research Society Symposia Proceedings, 2008, 1081, 1.                      | 0.1  | 0         |
| 221 | Laser Detection of Electrical Service Safety in a Single ZnO Nanowire. Journal of Nanoscience and Nanotechnology, 2012, 12, 547-551.                                            | 0.9  | 0         |
| 222 | NANODAMAGE AND NANOFAILURE OF 1D ZNO NANOMATERIALS AND NANODEVICES. , 2012, , .                                                                                                 |      | 0         |