Ruth B Caldwell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7261155/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corneal avascularity is due to soluble VEGF receptor-1. Nature, 2006, 443, 993-997.	13.7	605
2	Vascular Endothelial Growth Factor Signals Endothelial Cell Production of Nitric Oxide and Prostacyclin through Flk-1/KDR Activation of c-Src. Journal of Biological Chemistry, 1999, 274, 25130-25135.	1.6	425
3	Diabetes-induced Coronary Vascular Dysfunction Involves Increased Arginase Activity. Circulation Research, 2008, 102, 95-102.	2.0	327
4	Pravastatin sodium activates endothelial nitric oxide synthase independent of its cholesterol-lowering actions. Journal of the American College of Cardiology, 1999, 33, 234-241.	1.2	325
5	Arginase: A Multifaceted Enzyme Important in Health and Disease. Physiological Reviews, 2018, 98, 641-665.	13.1	303
6	Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives. Diabetes/Metabolism Research and Reviews, 2003, 19, 442-455.	1.7	253
7	Arginase: an old enzyme with new tricks. Trends in Pharmacological Sciences, 2015, 36, 395-405.	4.0	236
8	Neuroprotective and Blood-Retinal Barrier-Preserving Effects of Cannabidiol in Experimental Diabetes. American Journal of Pathology, 2006, 168, 235-244.	1.9	235
9	Vascular Endothelial Growth Factor and Diabetic Retinopathy: Role of Oxidative Stress. Current Drug Targets, 2005, 6, 511-524.	1.0	212
10	Neuroprotective Effect of(â^')Δ9-Tetrahydrocannabinol and Cannabidiol in N-Methyl-d-Aspartate-Induced Retinal Neurotoxicity. American Journal of Pathology, 2003, 163, 1997-2008.	1.9	197
11	VEGF Induces Nuclear Translocation of Flk-1/KDR, Endothelial Nitric Oxide Synthase, and Caveolin-1 in Vascular Endothelial Cells. Biochemical and Biophysical Research Communications, 1999, 256, 192-197.	1.0	194
12	Endothelial PFKFB3 Plays a Critical Role in Angiogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2014, 34, 1231-1239.	1.1	193
13	Experimental Diabetes Causes Breakdown of the Blood-Retina Barrier by a Mechanism Involving Tyrosine Nitration and Increases in Expression of Vascular Endothelial Growth Factor and Urokinase Plasminogen Activator Receptor. American Journal of Pathology, 2003, 162, 1995-2004.	1.9	187
14	Role of NADPH Oxidase in Retinal Vascular Inflammation. , 2008, 49, 3239.		184
15	Inhibition of NAD(P)H Oxidase Activity Blocks Vascular Endothelial Growth Factor Overexpression and Neovascularization during Ischemic Retinopathy. American Journal of Pathology, 2005, 167, 599-607.	1.9	177
16	Therapeutic Use of Citrulline in Cardiovascular Disease. Cardiovascular Drug Reviews, 2006, 24, 275-290.	4.4	176
17	Role of NADPH Oxidase and Stat3 in Statin-Mediated Protection against Diabetic Retinopathy. , 2008, 49, 3231.		152
18	Inflammation and diabetic retinal microvascular complications. Journal of Cardiovascular Disease Research (discontinued), 2011, 2, 96-103.	0.1	152

#	Article	IF	CITATIONS
19	Notch3 Is Critical for Proper Angiogenesis and Mural Cell Investment. Circulation Research, 2010, 107, 860-870.	2.0	149
20	VEGF differentially activates STAT3 in microvascular endothelial cells. FASEB Journal, 2003, 17, 1-18.	0.2	143
21	Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration. Journal of Cell Science, 2005, 118, 243-252.	1.2	136
22	High Glucose-Induced Tyrosine Nitration in Endothelial Cells: Role of eNOS Uncoupling and Aldose Reductase Activation. , 2003, 44, 3135.		135
23	Vascular Endothelial Growth Factor Activates STAT Proteins in Aortic Endothelial Cells. Journal of Biological Chemistry, 2000, 275, 33189-33192.	1.6	123
24	Angiotensin II-induced vascular endothelial dysfunction through RhoA/Rho kinase/p38 mitogen-activated protein kinase/arginase pathway. American Journal of Physiology - Cell Physiology, 2011, 300, C1181-C1192.	2.1	118
25	VEGFâ€induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor. FASEB Journal, 2003, 17, 752-754.	0.2	111
26	Anti-inflammatory therapy for diabetic retinopathy. Immunotherapy, 2011, 3, 609-628.	1.0	109
27	Hyperoxia induces retinal vascular endothelial cell apoptosis through formation of peroxynitrite. American Journal of Physiology - Cell Physiology, 2003, 285, C546-C554.	2.1	104
28	The role of RhoA/Rho kinase pathway in endothelial dysfunction. Journal of Cardiovascular Disease Research (discontinued), 2010, 1, 165-170.	0.1	95
29	Endothelial nitric oxide synthase interactions with G-protein-coupled receptors. Biochemical Journal, 1999, 343, 335-340.	1.7	92
30	Effects of hypoxia on glial cell expression of angiogenesis-regulating factors VEGF and TGF-?. , 1998, 24, 216-225.		86
31	Obesity-induced vascular dysfunction and arterial stiffening requires endothelial cell arginase 1. Cardiovascular Research, 2017, 113, 1664-1676.	1.8	82
32	Prevention of diabetes-induced arginase activation and vascular dysfunction by Rho kinase (ROCK) knockout. Cardiovascular Research, 2013, 97, 509-519.	1.8	81
33	Diabetes-induced vascular dysfunction involves arginase I. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H159-H166.	1.5	77
34	Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nature Communications, 2017, 8, 584.	5.8	77
35	Neuroprotection from Retinal Ischemia/Reperfusion Injury by NOX2 NADPH Oxidase Deletion. , 2011, 52, 8123.		76
36	Toxicity and Cellular Uptake of Gold Nanorods in Vascular Endothelium and Smooth Muscles of Isolated Rat Blood Vessel: Importance of Surface Modification, Small, 2012, 8, 1270-1278	5.2	76

#	Article	IF	CITATIONS
37	Arginase Activity Mediates Retinal Inflammation in Endotoxin-Induced Uveitis. American Journal of Pathology, 2009, 175, 891-902.	1.9	73
38	Role of IL-6 in Angiotensin II–Induced Retinal Vascular Inflammation. , 2010, 51, 1709.		73
39	Mechanisms of obesity-induced metabolic and vascular dysfunctions. Frontiers in Bioscience - Landmark, 2019, 24, 890-934.	3.0	71
40	Arginase in retinopathy. Progress in Retinal and Eye Research, 2013, 36, 260-280.	7.3	70
41	Peroxynitrite Mediates Diabetes-Induced Endothelial Dysfunction: Possible Role of Rho Kinase Activation. Experimental Diabetes Research, 2010, 2010, 1-9.	3.8	69
42	Effects of sustained hyperoxia on revascularization in experimental retinopathy of prematurity. Investigative Ophthalmology and Visual Science, 2002, 43, 496-502.	3.3	69
43	Modulation of VEGF production by pH and glucose in retinal Müller cells. Current Eye Research, 1998, 17, 875-882.	0.7	66
44	Protection against myocardial ischemia/reperfusion injury by short-term diabetes: enhancement of VEGF formation, capillary density, and activation of cell survival signaling. Naunyn-Schmiedeberg's Archives of Pharmacology, 2006, 373, 415-427.	1.4	62
45	Peroxynitrite increases VEGF expression in vascular endothelial cells via STAT3. Free Radical Biology and Medicine, 2005, 39, 1353-1361.	1.3	61
46	Freeze-fracture quantitative comparison of rabbit corneal epithelial and endothelial membranes. Current Eye Research, 1985, 4, 951-962.	0.7	60
47	Astrocytes modulate retinal vasculogenesis: Effects on endothelial cell differentiation. Glia, 1995, 15, 1-10.	2.5	60
48	Protein Kinase C-α and Arginase I Mediate Pneumolysin-Induced Pulmonary Endothelial Hyperpermeability. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 445-453.	1.4	60
49	Role of L -arginine in the vascular actions and development of tolerance to nitroglycerin. British Journal of Pharmacology, 2000, 130, 211-218.	2.7	59
50	Simvastatin Improves Diabetes-Induced Coronary Endothelial Dysfunction. Journal of Pharmacology and Experimental Therapeutics, 2006, 319, 386-395.	1.3	59
51	Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche. Science Translational Medicine, 2020, 12, .	5.8	59
52	Superior colliculus neurons which project to the cat lateral posterior nucleus have varying morphologies. Journal of Comparative Neurology, 1981, 203, 53-66.	0.9	58
53	Insights into the arginine paradox: evidence against the importance of subcellular location of arginase and eNOS. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H651-H666.	1.5	58
54	Arginase 2 promotes neurovascular degeneration during ischemia/reperfusion injury. Cell Death and Disease, 2016, 7, e2483-e2483.	2.7	56

#	Article	IF	CITATIONS
55	Mechanisms of Diabetes-Induced Endothelial Cell Senescence: Role of Arginase 1. International Journal of Molecular Sciences, 2018, 19, 1215.	1.8	54
56	Cysteine oxidation of copper transporter CTR1 drives VEGFR2 signalling and angiogenesis. Nature Cell Biology, 2022, 24, 35-50.	4.6	53
57	Arginase 2 Deletion Reduces Neuro-Glial Injury and Improves Retinal Function in a Model of Retinopathy of Prematurity. PLoS ONE, 2011, 6, e22460.	1.1	52
58	Reactive oxygen species-dependent RhoA activation mediates collagen synthesis in hyperoxic lung fibrosis. Free Radical Biology and Medicine, 2011, 50, 1689-1698.	1.3	52
59	Arginase 1 promotes retinal neurovascular protection from ischemia through suppression of macrophage inflammatory responses. Cell Death and Disease, 2018, 9, 1001.	2.7	52
60	A2A Adenosine Receptor (A2AAR) as a Therapeutic Target in Diabetic Retinopathy. American Journal of Pathology, 2011, 178, 2136-2145.	1.9	51
61	Arginase II Deletion Increases Corpora Cavernosa Relaxation in Diabetic Mice. Journal of Sexual Medicine, 2011, 8, 722-733.	0.3	51
62	Arginase as a mediator of diabetic retinopathy. Frontiers in Immunology, 2013, 4, 173.	2.2	51
63	Müller cell changes precede vascularization of the pigment epithelium in the dystrophic rat retina. Glia, 1990, 3, 464-475.	2.5	50
64	Endothelial nitric oxide synthase is a site of superoxide synthesis in endothelial cells treated with glyceryl trinitrate. British Journal of Pharmacology, 2000, 131, 1019-1023.	2.7	50
65	Amidative peptide processing and vascular function. American Journal of Physiology - Cell Physiology, 1997, 273, C1908-C1914.	2.1	49
66	HMG-CoA Reductase Inhibitors (Statin) Prevents Retinal Neovascularization in a Model of Oxygen-Induced Retinopathy. , 2009, 50, 4934.		49
67	Requirement of NOX2 Expression in Both Retina and Bone Marrow for Diabetes-Induced Retinal Vascular Injury. PLoS ONE, 2013, 8, e84357.	1.1	49
68	Neuroprotective and Intraocular Pressure-Lowering Effects of (–)Δ ⁹ -Tetrahydrocannabinol in a Rat Model of Glaucoma. Ophthalmic Research, 2007, 39, 69-75.	1.0	47
69	Antipermeability Function of PEDF Involves Blockade of the MAP Kinase/GSK/β-Catenin Signaling Pathway and uPAR Expression. , 2010, 51, 3273.		47
70	p38 Mitogen-Activated Protein Kinase (MAPK) Increases Arginase Activity and Contributes to Endothelial Dysfunction in Corpora Cavernosa from Angiotensin-II-Treated Mice. Journal of Sexual Medicine, 2010, 7, 3857-3867.	0.3	46
71	Arginase 1 Mediates Increased Blood Pressure and Contributes to Vascular Endothelial Dysfunction in Deoxycorticosterone Acetate-Salt Hypertension. Frontiers in Immunology, 2013, 4, 219.	2.2	45
72	NOX2-Induced Activation of Arginase and Diabetes-Induced Retinal Endothelial Cell Senescence. Antioxidants, 2017, 6, 43.	2.2	45

#	Article	IF	CITATIONS
73	Activated Rho Kinase Mediates Diabetes-Induced Elevation of Vascular Arginase Activation and Contributes to Impaired Corpora Cavernosa Relaxation: Possible Involvement of p38 MAPK Activation. Journal of Sexual Medicine, 2013, 10, 1502-1515.	0.3	44
74	Vascular dysfunction in retinopathy—An emerging role for arginase. Brain Research Bulletin, 2010, 81, 303-309.	1.4	42
75	Angiostatic role or astrocytes: Suppression of vascular endothelial cell growth by TGF-Î ² and other inhibitory factor(s). Glia, 1995, 15, 480-490.	2.5	41
76	Inhibition by the JAK/STAT Pathway of IFNÎ ³ - and LPS-Stimulated Nitric Oxide Synthase Induction in Vascular Smooth Muscle Cells. Biochemical and Biophysical Research Communications, 1998, 252, 508-512.	1.0	40
77	Anti-angiogenic actions of the mangosteen polyphenolic xanthone derivative α-mangostin. Microvascular Research, 2014, 93, 72-79.	1.1	39
78	Permeability of retinal pigment epithelial cell junctions in the dystrophic rat retina. Experimental Eye Research, 1983, 36, 415-427.	1.2	38
79	Serum Opens Tight Junctions and Reduces ZO-1 Protein in Retinal Epithelial Cells. Journal of Neurochemistry, 2002, 69, 859-867.	2.1	37
80	Neuroprotective effect of water-dispersible hesperetin in retinal ischemia reperfusion injury. Japanese Journal of Ophthalmology, 2016, 60, 51-61.	0.9	36
81	Normal vascular development in mice deficient in endothelial NO synthase: possible role of neuronal NO synthase. Molecular Vision, 2003, 9, 549-58.	1.1	36
82	l-Citrulline Protects from Kidney Damage in Type 1 Diabetic Mice. Frontiers in Immunology, 2013, 4, 480.	2.2	34
83	Angiotensin II limits NO production by upregulating arginase through a p38 MAPK–ATF-2 pathway. European Journal of Pharmacology, 2015, 746, 106-114.	1.7	34
84	Obesity-induced vascular inflammation involves elevated arginase activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2017, 313, R560-R571.	0.9	34
85	Hyperglycemia and reactive oxygen species mediate apoptosis in aortic endothelial cells through Janus kinase 2. Vascular Pharmacology, 2005, 43, 320-326.	1.0	33
86	NAD(P)H Oxidase-Dependent Regulation of CCL2 Production during Retinal Inflammation. , 2009, 50, 3033.		33
87	Arginase 2 Deficiency Prevents Oxidative Stress and Limits Hyperoxia-Induced Retinal Vascular Degeneration. PLoS ONE, 2014, 9, e110604.	1.1	33
88	Redistribution of Na-K-ATPase in the dystrophic rat retinal pigment epithelium. Journal of Neurocytology, 1984, 13, 895-910.	1.6	32
89	Activation of the Endothelin System Mediates Pathological Angiogenesis during Ischemic Retinopathy. American Journal of Pathology, 2014, 184, 3040-3051.	1.9	32
90	Freeze-fracture study of filipin binding in photoreceptor outer segments and pigment epithelium of dystrophic and normal retinas. Journal of Comparative Neurology, 1985, 236, 523-537.	0.9	30

#	Article	IF	CITATIONS
91	Photoreceptor-specific activity of the human interphotoreceptor retinoid-binding protein (IRBP) promoter in transgenic mice. Experimental Eye Research, 1992, 55, 225-233.	1.2	30
92	Lanthanum and freeze-fracture studies of retinal pigment epithelial cell junctions in the streptozotocin diabetic rat. Current Eye Research, 1985, 4, 215-227.	0.7	29
93	Hyperoxia Therapy of Pre-Proliferative Ischemic Retinopathy in a Mouse Model. , 2011, 52, 6384.		29
94	Akita Spontaneously Type 1 Diabetic Mice Exhibit Elevated Vascular Arginase and Impaired Vascular Endothelial and Nitrergic Function. PLoS ONE, 2013, 8, e72277.	1.1	29
95	Retinal Neuroprotection From Optic Nerve Trauma by Deletion of Arginase 2. Frontiers in Neuroscience, 2018, 12, 970.	1.4	29
96	Endothelial nitric oxide synthase interactions with G-protein-coupled receptors. Biochemical Journal, 1999, 343, 335.	1.7	27
97	Angiotensin II-Induced Arterial Thickening, Fibrosis and Stiffening Involves Elevated Arginase Function. PLoS ONE, 2015, 10, e0121727.	1.1	27
98	Netrin-1 is a novel regulator of vascular endothelial function in diabetes. PLoS ONE, 2017, 12, e0186734.	1.1	27
99	Pharmacological Inhibition of Spermine Oxidase Reduces Neurodegeneration and Improves Retinal Function in Diabetic Mice. Journal of Clinical Medicine, 2020, 9, 340.	1.0	26
100	Extracellular Signal-Regulated Kinase (ERK) Inhibition Decreases Arginase Activity and Improves Corpora Cavernosal Relaxation in Streptozotocin (STZ)-Induced Diabetic Mice. Journal of Sexual Medicine, 2011, 8, 3335-3344.	0.3	25
101	Hyperoxia Causes Regression of Vitreous Neovascularization by Downregulating VEGF/VEGFR2 Pathway. , 2013, 54, 918.		25
102	Diabetes-Induced Superoxide Anion and Breakdown of the Blood-Retinal Barrier: Role of the VEGF/uPAR Pathway. PLoS ONE, 2013, 8, e71868.	1.1	25
103	Deregulation of arginase induces bone complications in high-fat/high-sucrose diet diabetic mouse model. Molecular and Cellular Endocrinology, 2016, 422, 211-220.	1.6	24
104	A quantitative study of intramembrane changes during cell junctional breakdown in the dystrophic rat retinal pigment epithelium. Experimental Cell Research, 1984, 150, 104-117.	1.2	23
105	Chronic mild stress induced anxiety-like behaviors can Be attenuated by inhibition of NOX2-derived oxidative stress. Journal of Psychiatric Research, 2019, 114, 55-66.	1.5	23
106	Arginase inhibition enhances angiogenesis in endothelial cells exposed to hypoxia. Microvascular Research, 2015, 98, 1-8.	1.1	22
107	Targeting Polyamine Oxidase to Prevent Excitotoxicity-Induced Retinal Neurodegeneration. Frontiers in Neuroscience, 2018, 12, 956.	1.4	22
108	Arginase Pathway in Acute Retina and Brain Injury: Therapeutic Opportunities and Unexplored Avenues. Frontiers in Pharmacology, 2020, 11, 277.	1.6	22

#	Article	IF	CITATIONS
109	Hyperglycemia-impaired aortic vasorelaxation mediated through arginase elevation: Role of stress kinase pathways. European Journal of Pharmacology, 2019, 844, 26-37.	1.7	20
110	Is the Arginase Pathway a Novel Therapeutic Avenue for Diabetic Retinopathy?. Journal of Clinical Medicine, 2020, 9, 425.	1.0	17
111	Endothelial arginase 2 mediates retinal ischemia/reperfusion injury by inducing mitochondrial dysfunction. Molecular Metabolism, 2021, 53, 101273.	3.0	17
112	Pigment epithelial cell changes precede vascular transformations in the dystrophic rat retina. Experimental Eye Research, 1991, 53, 787-798.	1.2	16
113	The retinal microvasculature of spontaneously diabetic BB rats: Structure and luminal surface properties. Microvascular Research, 1990, 39, 15-27.	1.1	15
114	The choriocapillaris in spontaneously diabetic rats. Microvascular Research, 1991, 42, 229-244.	1.1	14
115	Role of Arginase 2 in Murine Retinopathy Associated with Western Diet-Induced Obesity. Journal of Clinical Medicine, 2020, 9, 317.	1.0	14
116	Utility of LysM-cre and Cdh5-cre Driver Mice in Retinal and Brain Research: An Imaging Study Using tdTomato Reporter Mouse. , 2020, 61, 51.		14
117	Role of Arginase 2 in Systemic Metabolic Activity and Adipose Tissue Fatty Acid Metabolism in Diet-Induced Obese Mice. International Journal of Molecular Sciences, 2019, 20, 1462.	1.8	13
118	Vasoactive intestinal polypeptide-containing nerve fibers are increased in abundance in the choroid of dystrophic RCS rats. Current Eye Research, 1992, 11, 501-515.	0.7	12
119	Deletion of Arginase 2 Ameliorates Retinal Neurodegeneration in a Mouse Model of Multiple Sclerosis. Molecular Neurobiology, 2019, 56, 8589-8602.	1.9	12
120	Neurofibromin Deficiency Induces Endothelial Cell Proliferation and Retinal Neovascularization. , 2018, 59, 2520.		11
121	Blockade of TREM-1 prevents vitreoretinal neovascularization in mice with oxygen-induced retinopathy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 2761-2768.	1.8	11
122	Blockade of VEGF-induced GSK/β-catenin signaling, uPAR expression and increased permeability by dominant negative p38α. Experimental Eye Research, 2012, 100, 101-108.	1.2	10
123	Preclinical investigation of Pegylated arginase 1 as a treatment for retina and brain injury. Experimental Neurology, 2022, 348, 113923.	2.0	10
124	Lectin-Ferritin Binding on Spontaneously Diabetic and Control Rat Retinal Microvasculature. Current Eye Research, 1989, 8, 271-283.	0.7	9
125	Protection against Doxorubicin-Induced Cardiotoxicity through Modulating iNOS/ARG 2 Balance by Electroacupuncture at PC6. Oxidative Medicine and Cellular Longevity, 2021, 2021, 1-17.	1.9	9
126	Deletion of arginase 2 attenuates neuroinflammation in an experimental model of optic neuritis. PLoS ONE, 2021, 16, e0247901.	1.1	8

#	Article	IF	CITATIONS
127	Vascular and Endothelial Actions of Inhibitors of Substance P Amidation. Journal of Cardiovascular Pharmacology, 2000, 35, 871-880.	0.8	8
128	Investigation of Retinal Metabolic Function in Type 1 Diabetic Akita Mice. Frontiers in Cardiovascular Medicine, 2022, 9, .	1.1	7
129	Filipin and digitonin studies of cell membrane changes during junction breakdown in the dystrophic rat retinal pigment epithelium. Current Eye Research, 1987, 6, 515-526.	0.7	5
130	Quantitative freeze-fracture and filipin-binding study of retinal pigment epithelial-cell basal membranes in diabetic rats. Experimental Eye Research, 1987, 44, 245-259.	1.2	5
131	Oxidative stress inactivates VEGF survival signaling in retinal endothelial cells via PI 3-kinase tyrosine nitration. Journal of Cell Science, 2016, 129, 3203-3203.	1.2	5
132	Novel Therapeutics for Diabetic Retinopathy and Diabetic Macular Edema: A Pathophysiologic Perspective. Frontiers in Physiology, 2022, 13, 831616.	1.3	5
133	Effects of hypoxia on glial cell expression of angiogenesis-regulating factors VEGF and TGF- \hat{l}^2 . , 1998, 24, 216.		4
134	Oxidative Stress in Diabetic Retinopathy. , 2008, , 217-242.		2
135	Peroxynitrite and Hydrogen Peroxide Increase Arginase Activity through the RhoA/Rho Kinase (RAK) Pathway. FASEB Journal, 2010, 24, 959.4.	0.2	2
136	Arginase 2 Overexpression Aggravates Ischemic Injury in Retinal Vascular Endothelial Cells. FASEB Journal, 2019, 33, 677.11.	0.2	1
137	Dual role of peroxynitrite in oxygenâ€induced retinopathy: oxidation versus nitration. FASEB Journal, 2006, 20, A1084.	0.2	1
138	Diabetesâ€induced arginase activity contributes to vascular and renal fibrosis and dysfunction. FASEB Journal, 2008, 22, 643-643.	0.2	1
139	Arginase II Deletion Improves Diabetesâ€Induced Neurogenic and Endothelial Dysfunction in Mice Corpora Cavernosa. FASEB Journal, 2010, 24, lb514.	0.2	1
140	Activation of the arginase 1/ornithine pathway suppresses ischemia/reperfusionâ€induced neuronal injury by suppressing HDAC3. FASEB Journal, 2019, 33, 500.8.	0.2	1
141	Simvastatin Improves Diabetesâ€Induced Coronary Endothelial Dysfunction Through Superoxide Reduction. FASEB Journal, 2006, 20, A1110.	0.2	0
142	Angiotensin and thrombinâ€induced endothelial dyfunction involves RhoA activation and elevated arginase activity. FASEB Journal, 2008, 22, 910.2.	0.2	0
143	Angiotensin II elevates endothelial arginase activity via RhoA/MAPK pathways. FASEB Journal, 2009, 23, 935.1.	0.2	0
144	Role of diabetes induced arginase in coronary vascular proliferation, enhanced collagen formation and fibrosis. FASEB Journal, 2011, 25, lb372.	0.2	0

#	Article	IF	CITATIONS
145	High glucose limits NO production through ATFâ€2 and câ€Jun transcriptional regulation of Arginase. FASEB Journal, 2012, 26, lb524.	0.2	Ο
146	Hyperoxiaâ€induced Microvascular Injury Involves Arginase 2â€induced Oxidative Stress, Microglia/Macrophage Activation and Constitutive NOS Downregulation. FASEB Journal, 2013, 27, .	0.2	0
147	Diabetes/high glucose induced arginase increases arterial smooth muscle cell proliferation and collagen synthesis/fibrosis through ornithine decarboxylase and ornithine aminotransferase pathways. FASEB Journal, 2013, 27, 651.2.	0.2	0
148	Obesityâ€induced metabolic and vascular dysregulation: Implication of arginase. FASEB Journal, 2019, 33, 514.9.	0.2	0
149	Deletion of Arginase 2 reduces neurodegeneration in a model of Multiple Sclerosis. FASEB Journal, 2019, 33, .	0.2	0
150	Treatment with polyamine oxidase inhibitor reduced neurodegeneration and improved retinal function in diabetic mice. FASEB Journal, 2019, 33, 501.17.	0.2	0
151	Critical role of arginase 2 in obesityâ€induced metabolic dysregulation in female mice: Implication of macrophage inflammatory response. FASEB Journal, 2020, 34, 1-1.	0.2	0