Alenka Copic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7260553/publications.pdf Version: 2024-02-01

		393982	552369
27	1,498	19	26
papers	citations	h-index	g-index
33	33	33	2242
all docs	docs citations	times ranked	citing authors

ALENKA CODIC

#	Article	IF	CITATIONS
1	Exceptional stability of a perilipin on lipid droplets depends on its polar residues, suggesting multimeric assembly. ELife, 2021, 10, .	2.8	21
2	A comprehensive library of fluorescent constructs of SARS oVâ€2 proteins and their initial characterisation in different cell types. Biology of the Cell, 2021, 113, 311-328.	0.7	17
3	Transport Pathways That Contribute to the Cellular Distribution of Phosphatidylserine. Frontiers in Cell and Developmental Biology, 2021, 9, 737907.	1.8	19
4	Osh6 requires Ist2 for localization to the ER-PM contacts and efficient phosphatidylserine transport. Journal of Cell Science, 2020, 133, .	1.2	30
5	Yeast lipids. Yeast, 2020, 37, 3-3.	0.8	0
6	An electrostatic switching mechanism to control the lipid transfer activity of Osh6p. Nature Communications, 2019, 10, 3926.	5.8	32
7	Following Anterograde Transport of Phosphatidylserine in Yeast in Real Time. Methods in Molecular Biology, 2019, 1949, 35-46.	0.4	5
8	A giant amphipathic helix from a perilipin that is adapted for coating lipid droplets. Nature Communications, 2018, 9, 1332.	5.8	89
9	A Combinatorial Lipid Code Shapes the Electrostatic Landscape of Plant Endomembranes. Developmental Cell, 2018, 45, 465-480.e11.	3.1	128
10	The Many Faces of Amphipathic Helices. Biomolecules, 2018, 8, 45.	1.8	135
11	Advances on the Transfer of Lipids by Lipid Transfer Proteins. Trends in Biochemical Sciences, 2017, 42, 516-530.	3.7	171
12	Crowd ourcing of Membrane Fission. BioEssays, 2017, 39, 1700117.	1.2	3
13	New molecular mechanisms of inter-organelle lipid transport. Biochemical Society Transactions, 2016, 44, 486-492.	1.6	25
14	Membrane bending by protein crowding is affected by protein lateral confinement. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 1152-1159.	1.4	38
15	Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science, 2015, 349, 432-436.	6.0	301
16	Fatty Acid Metabolism Meets Organelle Dynamics. Developmental Cell, 2015, 32, 657-658.	3.1	11
17	Traffic of p24 Proteins and COPII Coat Composition Mutually Influence Membrane Scaffolding. Current Biology, 2015, 25, 1296-1305.	1.8	29
18	Membrane bending: the power of protein imbalance. Trends in Biochemical Sciences, 2013, 38, 576-584.	3.7	46

Alenka Copic

#	Article	IF	CITATIONS
19	ER Cargo Properties Specify a Requirement for COPII Coat Rigidity Mediated by Sec13p. Science, 2012, 335, 1359-1362.	6.0	124
20	Genomewide Analysis Reveals Novel Pathways Affecting Endoplasmic Reticulum Homeostasis, Protein Modification and Quality Control. Genetics, 2009, 182, 757-769.	1.2	62
21	R25 is an intracellular membrane receptor for a snake venom secretory phospholipase A2 1. FEBS Letters, 2003, 553, 309-314.	1.3	31
22	Crotoxin acceptor protein isolated from Torpedo electric organ: binding properties to crotoxin by surface plasmon resonance. Toxicon, 2003, 41, 509-517.	0.8	25
23	Charge reversal of ammodytoxin A, a phospholipase A2-toxin, does not abolish its neurotoxicity. Biochemical Journal, 2000, 352, 251.	1.7	16
24	Charge reversal of ammodytoxin A, a phospholipase A2-toxin, does not abolish its neurotoxicity. Biochemical Journal, 2000, 352, 251-255.	1.7	22
25	The Amino Acid Region 115–119 of Ammodytoxins Plays an Important Role in Neurotoxicity. Biochemical and Biophysical Research Communications, 2000, 276, 1229-1234.	1.0	25
26	Identification and Purification of a Novel Receptor for Secretory Phospholipase A2 in Porcine Cerebral Cortex. Journal of Biological Chemistry, 1999, 274, 26315-26320.	1.6	55
27	Identification of a New High-Affinity Binding Protein for Neurotoxic Phospholipases A2. Biochemical and Biophysical Research Communications, 1998, 251, 209-212.	1.0	37