
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7260423/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The combined signatures of hypoxia and cellular landscape provides a prognostic and therapeutic<br>biomarker in hepatitis B virusâ€related hepatocellular carcinoma. International Journal of Cancer, 2022,<br>151, 809-824. | 2.3 | 11        |
| 2  | First-in-Human Phase I Clinical Trial of an SFV-Based RNA Replicon Cancer Vaccine against HPV-Induced<br>Cancers. Molecular Therapy, 2021, 29, 611-625.                                                                      | 3.7 | 48        |
| 3  | Re-polarization of immunosuppressive macrophages to tumor-cytotoxic macrophages by repurposed metabolic drugs. Oncolmmunology, 2021, 10, 1898753.                                                                            | 2.1 | 28        |
| 4  | Resistance Mechanisms Influencing Oncolytic Virotherapy, a Systematic Analysis. Vaccines, 2021, 9, 1166.                                                                                                                     | 2.1 | 13        |
| 5  | A systematic analysis on the clinical safety and efficacy of onco-virotherapy. Molecular Therapy -<br>Oncolytics, 2021, 23, 239-253.                                                                                         | 2.0 | 7         |
| 6  | GMP manufacturing of Vvax001, a therapeutic anti-HPV vaccine based on recombinant viral particles.<br>European Journal of Pharmaceutical Sciences, 2020, 143, 105096.                                                        | 1.9 | 8         |
| 7  | Therapy-Induced Changes in CXCR4 Expression in Tumor Xenografts Can Be Monitored Noninvasively with N-[11C]Methyl-AMD3465 PET. Molecular Imaging and Biology, 2020, 22, 883-890.                                             | 1.3 | 6         |
| 8  | Therapeutic Vaccines and Cancer Immunotherapy. Vaccines, 2020, 8, 596.                                                                                                                                                       | 2.1 | 6         |
| 9  | Hepatitis C Virus Proteins Core and NS5A Are Highly Sensitive to Oxidative Stress-Induced Degradation after eIF2α/ATF4 Pathway Activation. Viruses, 2020, 12, 425.                                                           | 1.5 | 11        |
| 10 | Alphavirus-based hepatitis C virus therapeutic vaccines: can universal helper epitopes enhance<br>HCV-specific cytotoxic T lymphocyte responses?. , 2019, 7, 251513551987467.                                                | 1.4 | 2         |
| 11 | SP-0553 Imaging of tumor infiltrating lymphocytes with [18F]FB-IL2 PET. Radiotherapy and Oncology, 2019, 133, S291.                                                                                                          | 0.3 | 0         |
| 12 | Hepatitis C virus core or NS3/4A protein expression preconditions hepatocytes against oxidative stress and endoplasmic reticulum stress. Redox Report, 2019, 24, 17-26.                                                      | 1.4 | 15        |
| 13 | The cellular stress response in hepatitis C virus infection: A balancing act to promote viral persistence and host cell survival. Virus Research, 2019, 263, 1-8.                                                            | 1.1 | 15        |
| 14 | An alphavirus-based therapeutic cancer vaccine: from design to clinical trial. Cancer Immunology,<br>Immunotherapy, 2019, 68, 849-859.                                                                                       | 2.0 | 19        |
| 15 | Antigen-specific active immunotherapy for ovarian cancer. The Cochrane Library, 2018, 9, CD007287.                                                                                                                           | 1.5 | 11        |
| 16 | Changes in (risk) behavior and HPV knowledge among Dutch girls eligible for HPV vaccination: an observational cohort study. BMC Public Health, 2018, 18, 837.                                                                | 1.2 | 6         |
| 17 | Potent therapeutic efficacy of an alphavirus replicon DNA vaccine expressing human papilloma virus<br>E6 and E7 antigens. Oncolmmunology, 2018, 7, e1487913.                                                                 | 2.1 | 36        |
| 18 | TLR9-Mediated Conditioning of Liver Environment Is Essential for Successful Intrahepatic<br>Immunotherapy and Effective Memory Recall. Molecular Therapy, 2017, 25, 2289-2298.                                               | 3.7 | 8         |

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | CD103+ tumor-infiltrating lymphocytes are tumor-reactive intraepithelial CD8+ T cells associated with prognostic benefit and therapy response in cervical cancer. Oncolmmunology, 2017, 6, e1338230.                   | 2.1 | 116       |
| 20 | Noninvasive monitoring of cancer therapy induced activated T cells using [ <sup>18</sup> F]FB-IL-2 PET imaging. Oncolmmunology, 2017, 6, e1248014.                                                                     | 2.1 | 51        |
| 21 | Cost-Effectiveness of Additional Human Papillomavirus Vaccination Programmes, in The Netherlands.<br>Value in Health, 2017, 20, A443.                                                                                  | 0.1 | Ο         |
| 22 | Vaccination against Oncoproteins of HPV16 for Noninvasive Vulvar/Vaginal Lesions: Lesion Clearance<br>Is Related to the Strength of the T-Cell Response. Clinical Cancer Research, 2016, 22, 2342-2350.                | 3.2 | 132       |
| 23 | Treatment Regimen, Surgical Outcome, and T-cell Differentiation Influence Prognostic Benefit of<br>Tumor-Infiltrating Lymphocytes in High-Grade Serous Ovarian Cancer. Clinical Cancer Research, 2016,<br>22, 714-724. | 3.2 | 51        |
| 24 | CD103+ intraepithelial T cells in high-grade serous ovarian cancer are phenotypically diverse TCRαβ+<br>CD8αβ+ T cells that can be targeted for cancer immunotherapy. Oncotarget, 2016, 7, 75130-75144.                | 0.8 | 64        |
| 25 | Abstract A108: CD103+ intraepithelial T cells in high-grade serous ovarian cancer are phenotypically<br>diverse TCRαβ+ CD8αβ+ T cells that can be targeted for cancer immunotherapy. , 2016, , .                       |     | 0         |
| 26 | Epitope Prediction Assays Combined with Validation Assays Strongly Narrows down Putative<br>Cytotoxic T Lymphocyte Epitopes. Vaccines, 2015, 3, 203-220.                                                               | 2.1 | 29        |
| 27 | Tattoo Delivery of a Semliki Forest Virus-Based Vaccine Encoding Human Papillomavirus E6 and E7.<br>Vaccines, 2015, 3, 221-238.                                                                                        | 2.1 | 14        |
| 28 | Antigen design enhances the immunogenicity of Semliki Forest virus-based therapeutic human<br>papillomavirus vaccines. Gene Therapy, 2015, 22, 560-567.                                                                | 2.3 | 17        |
| 29 | Prediction model for regional or distant recurrence in endometrial cancer based on classical pathological and immunological parameters. British Journal of Cancer, 2015, 113, 786-793.                                 | 2.9 | 20        |
| 30 | Sunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigen-specific immune responses and tumor eradication. Oncolmmunology, 2015, 4, e989764.                         | 2.1 | 95        |
| 31 | Strategies to Target Tumor Immunosuppression. , 2015, , 73-86.                                                                                                                                                         |     | 0         |
| 32 | Myeloid derived suppressor cells—An overview of combat strategies to increase immunotherapy<br>efficacy. Oncolmmunology, 2015, 4, e954829.                                                                             | 2.1 | 219       |
| 33 | The cost–effectiveness of HPV vaccination in addition to screening: a Dutch perspective. Expert<br>Review of Vaccines, 2015, 14, 589-604.                                                                              | 2.0 | 11        |
| 34 | A rationally designed combined treatment with an alphavirus-based cancer vaccine, sunitinib and<br>low-dose tumor irradiation completely blocks tumor development. OncoImmunology, 2015, 4,<br>e1029699.               | 2.1 | 23        |
| 35 | A phase 1/2 study combining gemcitabine, Pegintron and p53 SLP vaccine in patients with platinum-resistant ovarian cancer. Oncotarget, 2015, 6, 32228-32243.                                                           | 0.8 | 58        |
| 36 | Elevated serum CXCL16 is an independent predictor of poor survival in ovarian cancer and may reflect pro-metastatic ADAM protease activity. British Journal of Cancer, 2014, 110, 1535-1544.                           | 2.9 | 30        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Alphavirus-based Vaccines Encoding Nonstructural Proteins of Hepatitis C Virus Induce Robust and<br>Protective T-cell Responses. Molecular Therapy, 2014, 22, 881-890.                                                                           | 3.7 | 30        |
| 38 | Therapeutic immunization and local lowâ€dose tumor irradiation, a reinforcing combination.<br>International Journal of Cancer, 2014, 134, 859-872.                                                                                               | 2.3 | 38        |
| 39 | Interleukin-6 receptor and its ligand interleukin-6 are opposite markers for survival and infiltration with mature myeloid cells in ovarian cancer. Oncolmmunology, 2014, 3, e962397.                                                            | 2.1 | 27        |
| 40 | Equity in human papilloma virus vaccination uptake?: sexual behaviour, knowledge and demographics<br>in a cross-sectional study in (un)vaccinated girls in the Netherlands. BMC Public Health, 2014, 14, 288.                                    | 1.2 | 17        |
| 41 | Antigen-specific active immunotherapy for ovarian cancer. The Cochrane Library, 2014, , CD007287.                                                                                                                                                | 1.5 | 19        |
| 42 | HPV-Specific Immunotherapy: Key Role for Immunomodulators. Anti-Cancer Agents in Medicinal<br>Chemistry, 2014, 14, 265-279.                                                                                                                      | 0.9 | 12        |
| 43 | Inclusion of the benefits of enhanced cross-protection against cervical cancer and prevention of genital warts in the cost-effectiveness analysis of human papillomavirus vaccination in the Netherlands. BMC Infectious Diseases, 2013, 13, 75. | 1.3 | 26        |
| 44 | Cost–effectiveness of the prophylactic HPV vaccine: An application to the Netherlands taking non-cervical cancers and cross-protection into account. Vaccine, 2013, 31, 3922-3927.                                                               | 1.7 | 16        |
| 45 | Antigen-specific Immunotherapy in Ovarian Cancer and p53 as Tumor Antigen. Current Pharmaceutical<br>Design, 2012, 18, 3804-3811.                                                                                                                | 0.9 | 12        |
| 46 | Therapeutic vaccination against chronic hepatitis C virus infection. Antiviral Research, 2012, 96, 36-50.                                                                                                                                        | 1.9 | 26        |
| 47 | On Discounting of Health Gains from Human Papillomavirus Vaccination: Effects of Different<br>Approaches. Value in Health, 2012, 15, 562-567.                                                                                                    | 0.1 | 27        |
| 48 | PCN13 Analysis of the Impact of Prophylactic Vaccination Against Human Papillomavirus Infection<br>Using a Dynamic-Modelling Approach. Value in Health, 2012, 15, A411.                                                                          | 0.1 | 0         |
| 49 | Potentiation of a p53â€ <b>5</b> LP vaccine by cyclophosphamide in ovarian cancer: A singleâ€arm phase II study.<br>International Journal of Cancer, 2012, 131, E670-80.                                                                         | 2.3 | 81        |
| 50 | Longâ€ŧerm clinical and immunological effects of p53‣LP® vaccine in patients with ovarian cancer.<br>International Journal of Cancer, 2012, 130, 105-112.                                                                                        | 2.3 | 49        |
| 51 | The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. British Journal of Cancer, 2011, 105, 93-103.                                                                                     | 2.9 | 1,045     |
| 52 | Heterologous Prime-Boost Immunizations with a Virosomal and an Alphavirus Replicon Vaccine.<br>Molecular Pharmaceutics, 2011, 8, 65-77.                                                                                                          | 2.3 | 18        |
| 53 | Role of regulatory T-cells in immunization strategies involving a recombinant alphavirus vector system. Antiviral Therapy, 2011, 16, 207-218.                                                                                                    | 0.6 | 16        |
| 54 | Tumor-infiltrating Cytotoxic T Lymphocytes as Independent Prognostic Factor in Epithelial Ovarian<br>Cancer With Wilms Tumor Protein 1 Overexpression. Journal of Immunotherapy, 2011, 34, 516-523.                                              | 1.2 | 25        |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Vaccine-based clinical trials in ovarian cancer. Expert Review of Vaccines, 2011, 10, 775-784.                                                                                                                                     | 2.0 | 13        |
| 56 | Immunological and Clinical Effects of Vaccines Targeting p53-Overexpressing Malignancies. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.                                                                              | 3.0 | 31        |
| 57 | Until Which Age Should Women Be Vaccinated Against HPV Infection? Recommendation Based on<br>Cost-effectiveness Analyses. Journal of Infectious Diseases, 2011, 204, 377-384.                                                      | 1.9 | 52        |
| 58 | From Tumor Immunosuppression to Eradication: Targeting Homing and Activity of Immune Effector Cells to Tumors. Clinical and Developmental Immunology, 2011, 2011, 1-15.                                                            | 3.3 | 123       |
| 59 | Identification of genes and pathways associated with cytotoxic T lymphocyte infiltration of serous ovarian cancer. British Journal of Cancer, 2010, 103, 685-692.                                                                  | 2.9 | 43        |
| 60 | Role of T cell competition in the induction of cytotoxic T lymphocyte activity during viral vector-based immunization regimens. Vaccine, 2010, 28, 4275-4282.                                                                      | 1.7 | 10        |
| 61 | Down-regulation of proteasomal subunit MB1 is an independent predictor of improved survival in ovarian cancer. Gynecologic Oncology, 2009, 113, 256-263.                                                                           | 0.6 | 21        |
| 62 | Immunization with a P53 synthetic long peptide vaccine induces P53â€specific immune responses in ovarian cancer patients, a phase II trial. International Journal of Cancer, 2009, 125, 2104-2113.                                 | 2.3 | 123       |
| 63 | Prognostic significance of tumor-infiltrating T-lymphocytes in primary and metastatic lesions of advanced stage ovarian cancer. Cancer Immunology, Immunotherapy, 2009, 58, 449-459.                                               | 2.0 | 347       |
| 64 | Cost-effectiveness of prophylactic vaccination against human papillomavirus 16/18 for the prevention of cervical cancer: Adaptation of an existing cohort model to the situation in the Netherlands. Vaccine, 2009, 27, 4776-4783. | 1.7 | 28        |
| 65 | Viral vector-based prime-boost immunization regimens: a possible involvement of T-cell competition.<br>Gene Therapy, 2008, 15, 393-403.                                                                                            | 2.3 | 19        |
| 66 | Survival of ovarian cancer patients overexpressing the tumour antigen p53 is diminished in case of MHC class I down-regulation. Gynecologic Oncology, 2008, 110, 365-373.                                                          | 0.6 | 32        |
| 67 | Serum Cytokine Profiling as a Diagnostic and Prognostic Tool in Ovarian Cancer: A Potential Role for<br>Interleukin 7. Clinical Cancer Research, 2007, 13, 2385-2391.                                                              | 3.2 | 99        |
| 68 | P53-specific T cell responses in patients with malignant and benign ovarian tumors: Implications for p53 based immunotherapy. International Journal of Cancer, 2007, 121, 606-614.                                                 | 2.3 | 34        |
| 69 | A comparative study on the immunotherapeutic efficacy of recombinant Semliki Forest virus and adenovirus vector systems in a murine model for cervical cancer. Gene Therapy, 2007, 14, 1695-1704.                                  | 2.3 | 27        |
| 70 | Frequencies and role of regulatory T cells in patients with (pre)malignant cervical neoplasia. Clinical and Experimental Immunology, 2007, 150, 199-209.                                                                           | 1.1 | 76        |
| 71 | Recombinant alphaviruses as vectors for anti-tumour and anti-microbial immunotherapy. Journal of Clinical Virology, 2006, 35, 233-243.                                                                                             | 1.6 | 31        |
| 72 | Enhancement of human papilloma virus type 16 E7 specific T cell responses by local invasive procedures<br>in patients with (pre)malignant cervical neoplasia. International Journal of Cancer, 2006, 118, 2529-2537.               | 2,3 | 17        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | A Virosomal Immunization Strategy against Cervical Cancer and Pre-Malignant Cervical Disease.<br>Antiviral Therapy, 2006, 11, 717-728.                                                                                        | 0.6 | 20        |
| 74 | Virosomes for antigen and DNA delivery. Advanced Drug Delivery Reviews, 2005, 57, 451-463.                                                                                                                                    | 6.6 | 94        |
| 75 | Induction of human papilloma virus E6/E7-specific cytotoxic T-lymphocyte activity in immune-tolerant,<br>E6/E7-transgenic mice. Gene Therapy, 2005, 12, 1410-1414.                                                            | 2.3 | 39        |
| 76 | Immunologic aspect of ovarian cancer and p53 as tumor antigen. Journal of Translational Medicine, 2005, 3, 34.                                                                                                                | 1.8 | 31        |
| 77 | Induction of cytotoxic T lymphocyte activity by immunization with recombinant Semliki Forest virus:<br>indications for cross-priming. Vaccine, 2004, 22, 1104-1113.                                                           | 1.7 | 30        |
| 78 | Superior therapeutic efficacy of alphavirus-mediated immunization against human papilloma virus type<br>16 antigens in a murine tumour model: effects of the route of immunization. Antiviral Therapy, 2004, 9,<br>733-42.    | 0.6 | 28        |
| 79 | Superior Therapeutic Efficacy of Alphavirus-Mediated Immunization against Human Papilloma Virus<br>Type 16 Antigens in a Murine Tumour Model: Effects of the Route of Immunization. Antiviral Therapy,<br>2004, 9, 733-742.   | 0.6 | 53        |
| 80 | Eradication of established HPV16-transformed tumours after immunisation with recombinant Semliki<br>Forest virus expressing a fusion protein of E6 and E7. Vaccine, 2003, 21, 1082-1088.                                      | 1.7 | 63        |
| 81 | Influenza Virosomes in Vaccine Development. Methods in Enzymology, 2003, 373, 74-91.                                                                                                                                          | 0.4 | 42        |
| 82 | Immunization strategy against cervical cancer involving an alphavirus vector expressing high levels<br>of a stable fusion protein of human papillomavirus 16 E6 and E7. Gene Therapy, 2002, 9, 85-94.                         | 2.3 | 60        |
| 83 | VIROSOMES IN VACCINE DEVELOPMENT: INDUCTION OF CYTOTOXIC T LYMPHOCYTE ACTIVITY WITH VIROSOME-ENCAPSULATED PROTEIN ANTIGENS. Journal of Liposome Research, 2002, 12, 155-163.                                                  | 1.5 | 27        |
| 84 | Virosome-mediated delivery of protein antigens to dendritic cells. Vaccine, 2002, 20, 2287-2295.                                                                                                                              | 1.7 | 124       |
| 85 | A potential role of macrophage activation in the treatment of cancer. Critical Reviews in<br>Oncology/Hematology, 2002, 44, 143-161.                                                                                          | 2.0 | 291       |
| 86 | Delivery of Protein Antigens to the Immune System by Fusion-Active Virosomes: A Comparison with<br>Liposomes and ISCOMs. Bioscience Reports, 2002, 22, 323-338.                                                               | 1.1 | 72        |
| 87 | Activation of peritoneal cells upon in vivo transfection with a recombinant alphavirus expressing<br>GM-CSF. Gene Therapy, 2001, 8, 300-307.                                                                                  | 2.3 | 28        |
| 88 | Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages. Cancer Research, 2001, 61, 7305-9.                                                               | 0.4 | 146       |
| 89 | Genetic immunization against cervical carcinoma: induction of cytotoxic T lymphocyte activity with a<br>recombinant alphavirus vector expressing human papillomavirus type 16 E6 and E7. Gene Therapy, 2000,<br>7, 1859-1866. | 2.3 | 53        |
| 90 | Virosomes as an Antigen Delivery System. Journal of Liposome Research, 2000, 10, 329-338.                                                                                                                                     | 1.5 | 17        |

| #   | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Toxicity of doxorubicin entrapped within long-circulating liposomes. Journal of Controlled Release, 1997, 44, 1-9.                                                                                                                                        | 4.8 | 55        |
| 92  | Liposomes: vehicles for the targeted and controlled delivery of peptides and proteins. Journal of Controlled Release, 1997, 46, 165-175.                                                                                                                  | 4.8 | 28        |
| 93  | Modulation of pharmacokinetic behavior of liposomes. Advanced Drug Delivery Reviews, 1997, 24,<br>179-191.                                                                                                                                                | 6.6 | 33        |
| 94  | Different intrahepatic distribution of phosphatidylglycerol and phosphatidylserine liposomes in the rat. Hepatology, 1997, 26, 416-423.                                                                                                                   | 3.6 | 65        |
| 95  | Tumoricidal response of liver macrophages isolated from rats bearing liver metastases of colon<br>adenocarcinoma. Journal of Leukocyte Biology, 1995, 57, 617-623.                                                                                        | 1.5 | 22        |
| 96  | Liposomal doxorubicin-induced toxicity: Depletion and impairment of phagocytic activity of liver macrophages. International Journal of Cancer, 1995, 61, 716-721.                                                                                         | 2.3 | 132       |
| 97  | Antitumor reactivity induced by liposomal MTP-PE in a liver metastasis model of colon cancer in the rat. Clinical and Experimental Metastasis, 1995, 13, 328-36.                                                                                          | 1.7 | 12        |
| 98  | Opportunities in targeted drug delivery to Kupffer cells: delivery of immunomodulators to Kupffer cells-activation of tumoricidal properties. Advanced Drug Delivery Reviews, 1995, 17, 21-30.                                                            | 6.6 | 12        |
| 99  | Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system.<br>Advanced Drug Delivery Reviews, 1995, 17, 31-48.                                                                                                           | 6.6 | 788       |
| 100 | Heterogeneity in secretory responses of rat liver macrophages of different size. Liver, 1995, 15, 313-319.                                                                                                                                                | 0.1 | 17        |
| 101 | Proliferation of rat liver macrophagesin vitro: Influence of hemopoietic growth factors. Hepatology, 1994, 19, 666-674.                                                                                                                                   | 3.6 | 20        |
| 102 | Liver metastasis model of colon cancer in the rat: immunohistochemical characterization. Invasion & Metastasis, 1993, 13, 102-12.                                                                                                                         | 0.5 | 36        |
| 103 | Activation of Kupffer cell tumoricidal activity by immunomodulators encapsulated in liposomes.<br>Research in Immunology, 1992, 143, 211-214.                                                                                                             | 0.9 | 17        |
| 104 | Therapy of Murine Liver Metastases by Administration of MDP Encapsulated in Liposomes. Selective Cancer Therapeutics, 1990, 6, 63-71.                                                                                                                     | 0.5 | 26        |
| 105 | Endocytic and Tumoricidal Heterogeneity of Rat Liver Macrophage Populations. Selective Cancer Therapeutics, 1989, 5, 157-167.                                                                                                                             | 0.5 | 21        |
| 106 | Differential effects of liposome-incorporation on liver macrophage activating potencies of rough<br>lipopolysaccharide, lipid A, and muramyl dipeptide. Differences in susceptibility to lysosomal enzymes.<br>Journal of Immunology, 1989, 142, 2469-74. | 0.4 | 12        |
| 107 | Liposomes in chemo- and immunotherapy of cancer. Lipids, 1987, 22, 891-896.                                                                                                                                                                               | 0.7 | 11        |
| 108 | In vitro activation of rat liver macrophages to tumoricidal activity by free or liposome-encapsulated muramyl dipeptide. Cancer Research, 1986, 46, 4330-5.                                                                                               | 0.4 | 69        |

2

|                                                                                                                                                                                           | IF                                 | CITATIONS |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------|
| 109 T-cell maturation in the human thymus and tonsil: Peanut agglutinin binding T lymphocytes<br>and tonsil differ in maturation stage. Clinical Immunology and Immunopathology, 1983, 29 | s in thymus 2.1<br>9, 271-281. 2.1 | 14        |

<sup>110</sup> Immunization strategy against cervical cancer involving an alphavirus vector expressing high levels of a stable fusion protein of human papillomavirus 16 E6 and E7., 0, .