Suvi Kuittinen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7260411/publications.pdf

Version: 2024-02-01

840776 996975 15 314 11 15 citations h-index g-index papers 15 15 15 439 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Effect of solvent mixture pretreatment on sugar release from short-rotation coppice Salix schwerinii for biobutanol production. Bioresource Technology, 2022, 344, 126262.	9.6	3
2	Phytoextraction and recovery of rare earth elements using willow (Salix spp.). Science of the Total Environment, 2022, 809, 152209.	8.0	15
3	Bioethanol production from short rotation S.Âschwerinii E. Wolf is carbon neutral with utilization of waste-based organic fertilizer and process carbon dioxide capture. Journal of Cleaner Production, 2021, 293, 126088.	9.3	11
4	Energy and environmental impact assessment of Indian rice straw for the production of second-generation bioethanol. Sustainable Energy Technologies and Assessments, 2021, 47, 101546.	2.7	19
5	Grounds for improving the implementation of game-oriented forest management – A double sampling survey of Finnish forest owners and professionals. Forest Policy and Economics, 2020, 119, 102266.	3.4	4
6	An assessment of side-stream generation from Finnish forest industry. Journal of Material Cycles and Waste Management, 2019, 21, 265-280.	3.0	19
7	Chelate-assisted phytoextraction: Growth and ecophysiological responses by Salix schwerinii E.L Wolf grown in artificially polluted soils. Journal of Geochemical Exploration, 2019, 205, 106335.	3.2	20
8	Lake bottom biomass as a potential source for the biorefining industry. Bioresource Technology Reports, 2019, 7, 100282.	2.7	2
9	Biomass growth variation and phytoextraction potential of four <i>Salix</i> varieties grown in contaminated soil amended with lime and wood ash. International Journal of Phytoremediation, 2019, 21, 1329-1340.	3.1	15
10	Hybridization of sugar-carboxylate-syngas platforms for the production of bio-alcohols from lignocellulosic biomass (LCB) – A state-of-the-art review and recommendations. Energy Conversion and Management, 2019, 200, 112111.	9.2	16
11	Influence of size reduction treatments on sugar recovery from Norway spruce for butanol production. Bioresource Technology, 2018, 257, 113-120.	9.6	19
12	Enhanced acetone-butanol-ethanol production from lignocellulosic hydrolysates by using starchy slurry as supplement. Bioresource Technology, 2017, 243, 126-134.	9.6	31
13	Effect of Microwave-Assisted Pretreatment Conditions on Hemicellulose Conversion and Enzymatic Hydrolysis of Norway Spruce. Bioenergy Research, 2016, 9, 344-354.	3.9	16
14	Enhanced sugar production from pretreated barley straw by additive xylanase and surfactants in enzymatic hydrolysis for acetone–butanol–ethanol fermentation. Bioresource Technology, 2015, 189, 131-137.	9.6	76
15	Co-fermentation of hemicellulose and starch from barley straw and grain for efficient pentoses utilization in acetone–butanol–ethanol production. Bioresource Technology, 2015, 179, 128-135.	9.6	48