
## Francesca Sisto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7260276/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | In Vitro Activity of the Arylaminoartemisinin GC012 against Helicobacter pylori and Its Effects on<br>Biofilm. Pathogens, 2022, 11, 740.                                                                                          | 1.2 | 4         |
| 2  | New azolyl-derivatives as multitargeting agents against breast cancer and fungal infections:<br>synthesis, biological evaluation and docking study. Journal of Enzyme Inhibition and Medicinal<br>Chemistry, 2021, 36, 1631-1644. | 2.5 | 9         |
| 3  | Synthesis and Evaluation of Thymol-Based Synthetic Derivatives as Dual-Action Inhibitors against<br>Different Strains of H. pylori and AGS Cell Line. Molecules, 2021, 26, 1829.                                                  | 1.7 | 12        |
| 4  | Paclitaxel Priming of TRAIL Expressing Mesenchymal Stromal Cells (MSCs- TRAIL) Increases Antitumor Efficacy of Their Secretome. Current Cancer Drug Targets, 2021, 21, 213-222.                                                   | 0.8 | 9         |
| 5  | In Vitro Activity of Monofunctional Pt-II Complex Based on 8-Aminoquinoline against Human<br>Glioblastoma. Pharmaceutics, 2021, 13, 2101.                                                                                         | 2.0 | 5         |
| 6  | Complementary and alternative medicine research, prospects and limitations in Pakistan: A literature review. Acta Ecologica Sinica, 2020, 40, 451-463.                                                                            | 0.9 | 98        |
| 7  | Biofilm and Quorum Sensing inhibitors: the road so far. Expert Opinion on Therapeutic Patents, 2020, 30, 917-930.                                                                                                                 | 2.4 | 36        |
| 8  | Synthesis and Biological Evaluation of Carvacrol-Based Derivatives as Dual Inhibitors of H. pylori<br>Strains and AGS Cell Proliferation. Pharmaceuticals, 2020, 13, 405.                                                         | 1.7 | 19        |
| 9  | Antimicrobial and Antibiofilm Activities of New Synthesized Silver Ultra-NanoClusters (SUNCs)<br>Against Helicobacter pylori. Frontiers in Microbiology, 2020, 11, 1705.                                                          | 1.5 | 33        |
| 10 | Correlation between the Antimicrobial Activity and Metabolic Profiles of Cell Free Supernatants and<br>Membrane Vesicles Produced by Lactobacillus reuteri DSM 17938. Microorganisms, 2020, 8, 1653.                              | 1.6 | 22        |
| 11 | The Antibiofilm Effect of a Medical Device Containing TIAB on Microorganisms Associated with Surgical Site Infection. Molecules, 2019, 24, 2280.                                                                                  | 1.7 | 23        |
| 12 | Identification and characterization of the α-CA in the outer membrane vesicles produced<br>by <i>Helicobacter pylori</i> . Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 189-195.                               | 2.5 | 38        |
| 13 | <i>In vitro</i> inhibition of <i>Helicobacter pylori</i> and interaction studies of lichen natural products with jack bean urease. New Journal of Chemistry, 2018, 42, 5356-5366.                                                 | 1.4 | 17        |
| 14 | Chromatographic Analyses, In Vitro Biological Activities, and Cytotoxicity of Cannabis sativa L.<br>Essential Oil: A Multidisciplinary Study. Molecules, 2018, 23, 3266.                                                          | 1.7 | 99        |
| 15 | Uptake-release by MSCs of a cationic platinum(II) complex active in vitro on human malignant cancer cell lines. Biomedicine and Pharmacotherapy, 2018, 108, 111-118.                                                              | 2.5 | 18        |
| 16 | Paclitaxel-releasing mesenchymal stromal cells inhibit in vitro proliferation of human mesothelioma cells. Biomedicine and Pharmacotherapy, 2017, 87, 755-758.                                                                    | 2.5 | 36        |
| 17 | Cytotoxic and Antimicrobial Activities ofCantharellus cibariusFr. (Cantarellaceae). Journal of Medicinal Food, 2017, 20, 790-796.                                                                                                 | 0.8 | 14        |
| 18 | Drug Loaded Gingival Mesenchymal Stromal Cells (GinPa-MSCs) Inhibit In Vitro Proliferation of Oral<br>Squamous Cell Carcinoma. Scientific Reports, 2017, 7, 9376.                                                                 | 1.6 | 60        |

FRANCESCA SISTO

| #  | Article                                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Fluorescent Immortalized Human Adipose Derived Stromal Cells (hASCs-TS/GFP+) for Studying Cell<br>Drug Delivery Mediated by Microvesicles. Anti-Cancer Agents in Medicinal Chemistry, 2017, 17, 1578-1585.                                                       | 0.9 | 23        |
| 20 | Cell-mediated drug delivery by gingival interdental papilla mesenchymal stromal cells (GinPa-MSCs)<br>loaded with paclitaxel. Expert Opinion on Drug Delivery, 2016, 13, 789-798.                                                                                | 2.4 | 39        |
| 21 | In vitro activity of artemisone and artemisinin derivatives against extracellular and intracellular<br>Helicobacter pylori. International Journal of Antimicrobial Agents, 2016, 48, 101-105.                                                                    | 1.1 | 22        |
| 22 | Antibacterial and cytotoxic activities of wild mushroom Fomes fomentarius (L.) Fr., Polyporaceae.<br>Industrial Crops and Products, 2016, 79, 110-115.                                                                                                           | 2.5 | 29        |
| 23 | Human amniotic mesenchymal stromal cells (hAMSCs) as potential vehicles for drug delivery in cancer therapy: an in vitro study. Stem Cell Research and Therapy, 2015, 6, 155.                                                                                    | 2.4 | 60        |
| 24 | Anti- <i>Helicobacter Pylori</i> Activity of Four <i>Alchemilla</i> Species (Rosaceae). Natural Product<br>Communications, 2015, 10, 1934578X1501000.                                                                                                            | 0.2 | 9         |
| 25 | Human CD14+ cells loaded with Paclitaxel inhibit in vitro cell proliferation of glioblastoma.<br>Cytotherapy, 2015, 17, 310-319.                                                                                                                                 | 0.3 | 13        |
| 26 | Isolation and Characterization of a New Clostridium difficile Ribotype During a Prospective Study in a<br>Hospital in Italy. Current Microbiology, 2015, 70, 151-153.                                                                                            | 1.0 | 2         |
| 27 | Bioactive compounds of <i>Crocus sativus</i> L. and their semi-synthetic derivatives as promising<br>anti- <i>Helicobacter pylori</i> , anti-malarial and anti-leishmanial agents. Journal of Enzyme Inhibition<br>and Medicinal Chemistry, 2015, 30, 1027-1033. | 2.5 | 55        |
| 28 | Gemcitabine-releasing mesenchymal stromal cells inhibit inÂvitro proliferation of human pancreatic<br>carcinoma cells. Cytotherapy, 2015, 17, 1687-1695.                                                                                                         | 0.3 | 43        |
| 29 | Drug-releasing mesenchymal cells strongly suppress B16 lung metastasis in a syngeneic murine model.<br>Journal of Experimental and Clinical Cancer Research, 2015, 34, 82.                                                                                       | 3.5 | 30        |
| 30 | Mesenchymal Stromal Cells Uptake and Release Paclitaxel without Reducing its Anticancer Activity.<br>Anti-Cancer Agents in Medicinal Chemistry, 2015, 15, 400-405.                                                                                               | 0.9 | 7         |
| 31 | Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: A new approach for drug delivery. Journal of Controlled Release, 2014, 192, 262-270.                                                        | 4.8 | 697       |
| 32 | Human mesenchymal stromal cells can uptake and release ciprofloxacin, acquiring in vitro<br>anti-bacterial activity. Cytotherapy, 2014, 16, 181-190.                                                                                                             | 0.3 | 19        |
| 33 | Mesenchymal stromal cells primed with <scp>P</scp> aclitaxel attract and kill leukaemia cells, inhibit<br>angiogenesis and improve survival of leukaemiaâ€bearing mice. British Journal of Haematology, 2013, 160,<br>766-778.                                   | 1.2 | 67        |
| 34 | Human Skin-Derived Fibroblasts Acquire In Vitro Anti-Tumor Potential after Priming with Paclitaxel.<br>Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 523-530.                                                                                             | 0.9 | 12        |
| 35 | Human skin-derived fibroblasts acquire in vitro anti-tumor potential after priming with Paclitaxel.<br>Anti-Cancer Agents in Medicinal Chemistry, 2013, 13, 523-30.                                                                                              | 0.9 | 10        |
| 36 | A mesenchymal stromal cell line resistant to paclitaxel that spontaneously differentiates into osteoblast-like cells. Cell Biology and Toxicology, 2011, 27, 169-180.                                                                                            | 2.4 | 10        |

FRANCESCA SISTO

| #  | Article                                                                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Mesenchymal Stromal Cells Primed with Paclitaxel Provide a New Approach for Cancer Therapy. PLoS<br>ONE, 2011, 6, e28321.                                                                                                      | 1.1 | 146       |
| 38 | CD45+/CD133+positive cells expanded from umbilical cord blood expressing PDX-1 and markers of pluripotency. Cell Biology International, 2010, 34, 783-790.                                                                     | 1.4 | 5         |
| 39 | Synthesis and antiâ€ <i>Helicobacter pylori</i> activity of 4â€(coumarinâ€3â€yl)thiazolâ€2â€ylhydrazone<br>derivatives. Journal of Heterocyclic Chemistry, 2010, 47, 1269-1274.                                                | 1.4 | 30        |
| 40 | Synthesis, selective anti-Helicobacter pylori activity, and cytotoxicity of novel<br>N-substituted-2-oxo-2H-1-benzopyran-3-carboxamides. Bioorganic and Medicinal Chemistry Letters, 2010,<br>20, 4922-4926.                   | 1.0 | 113       |
| 41 | Prevalidation of the Rat CFU-GM Assay for In Vitro Toxicology Applications. ATLA Alternatives To<br>Laboratory Animals, 2010, 38, 105-117.                                                                                     | 0.7 | 17        |
| 42 | The Lipid Moiety of Haemozoin (Malaria Pigment) andP. falciparumParasitised Red Blood Cells Bind<br>Synthetic and Native Endothelin-1. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-9.                              | 3.0 | 10        |
| 43 | Antimicrobial Susceptibility Testing of Helicobacter pylori Determined by Microdilution Method Using<br>a New Medium. Current Microbiology, 2009, 58, 559-563.                                                                 | 1.0 | 22        |
| 44 | Microbiological Risk Assessment in Stem Cell Manipulation. Critical Reviews in Microbiology, 2008, 34, 1-12.                                                                                                                   | 2.7 | 9         |
| 45 | A novel class of selective anti-Helicobacter pylori agents 2-oxo-2H-chromene-3-carboxamide derivatives. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 3065-3071.                                                       | 1.0 | 39        |
| 46 | High-density lipoproteins attenuate interleukin-6 production in endothelial cells exposed to<br>pro-inflammatory stimuli. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2005,<br>1736, 136-143.        | 1.2 | 43        |
| 47 | High-Density Lipoproteins Protect Isolated Rat Hearts From Ischemia-Reperfusion Injury by Reducing<br>Cardiac Tumor Necrosis Factor-α Content and Enhancing Prostaglandin Release. Circulation Research,<br>2003, 92, 330-337. | 2.0 | 136       |
| 48 | Differential Cytokine Pattern in the Spleens and Livers of BALB/c Mice Infected with Penicillium marneffei : Protective Role of Gamma Interferon. Infection and Immunity, 2003, 71, 465-473.                                   | 1.0 | 55        |
| 49 | Reverse transcription polymerase chain reaction method for the detection of glycopeptide resistance<br>in enterococci. Journal of Microbiological Methods, 1999, 35, 95-100.                                                   | 0.7 | 4         |