List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7259855/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	<i>In situ</i> fabricated MOF–cellulose composite as an advanced ROS deactivator-convertor: fluoroswitchable bi-phasic tweezers for free chlorine detoxification and size-exclusive catalytic insertion of aqueous H ₂ O ₂ . Journal of Materials Chemistry A, 2022, 10, 4316-4332.	5.2	19
2	Evaluating the performance of Cr-Soc-MOF Super-Adsorbents for CO2 capture from flue gas under humid condition through molecular simulation. Separation and Purification Technology, 2022, 295, 121298.	3.9	14
3	Molecular level investigation on the impact of geometric isomers as fluorinated ligands in SIFSIX MOF for natural gas sweetening. Separation Science and Technology, 2022, 57, 2554-2565.	1.3	1
4	Significance of extra-framework monovalent and divalent cation motion upon CO2 and N2 sorption in zeolite X. Materials Today: Proceedings, 2022, 68, 85-92.	0.9	2
5	Nanoencapsulation of Ru(<i>p</i> -cymene) Complex Bearing Ginger-based Natural Product into Liposomal Nanoformulation to Improve Its Cellular Uptake and Antiproliferative Activity. ACS Applied Bio Materials, 2022, 5, 3241-3256.	2.3	8
6	Tunable Capacitive Behavior in Metallopolymer-based Electrochromic Thin Film Supercapacitors. ACS Applied Materials & Interfaces, 2022, 14, 31900-31910.	4.0	10
7	Fluorinated metal organic frameworks, MFFIVE-Ni-L (M = Fe/Al, L = pyr), with coordinatively unsaturated metal site for CO ₂ separation from flue gas in the presence of humidity by computational methods. Dalton Transactions, 2021, 50, 466-471.	1.6	13
8	An ultralight charged MOF as fluoro-switchable monitor for assorted organo-toxins: size-exclusive dye scrubbing and anticounterfeiting applications <i>via</i> Tb ³⁺ sensitization. Inorganic Chemistry Frontiers, 2021, 8, 296-310.	3.0	41
9	Efficient chemical fixation of CO ₂ from direct air under environment-friendly co-catalyst and solvent-free ambient conditions. Journal of Materials Chemistry A, 2021, 9, 23127-23139.	5.2	51
10	Highly selective detection of TNP over other nitro compounds in water: the role of selective host–guest interactions in Zr-NDI MOF. New Journal of Chemistry, 2021, 45, 12931-12937.	1.4	24
11	N-Functionality actuated improved CO ₂ adsorption and turn-on detection of organo-toxins with guest-induced fluorescence modulation in isostructural diamondoid MOFs. Journal of Materials Chemistry C, 2021, 9, 7142-7153.	2.7	32
12	Chemically Robust and Bifunctional Co(II)-Framework for Trace Detection of Assorted Organo-toxins and Highly Cooperative Deacetalization–Knoevenagel Condensation with Pore-Fitting-Induced Size-Selectivity. ACS Applied Materials & Interfaces, 2021, 13, 28378-28389.	4.0	40
13	Structural engineering in pre-functionalized, imine-based covalent organic framework via anchoring active Ru(II)-complex for visible-light triggered and aerobic cross-coupling of α-amino esters with indoles. Applied Catalysis B: Environmental, 2021, 292, 120149.	10.8	30
14	Chemical Fixation of CO ₂ Under Solvent and Co-Catalyst-free Conditions Using a Highly Porous Two-fold Interpenetrated Cu(II)-Metal–Organic Framework. Crystal Growth and Design, 2021, 21, 1233-1241.	1.4	27
15	A disappearing metastable hydrate form of L-citrulline: Variable conformations in polymorphs and hydrates. Journal of Molecular Structure, 2020, 1201, 127179.	1.8	2
16	Supramolecular Surface Charge Regulation in Ionic Covalent Organic Nanosheets: Reversible Exfoliation and Controlled Bacterial Growth. Angewandte Chemie, 2020, 132, 8791-8797.	1.6	40
17	Supramolecular Surface Charge Regulation in Ionic Covalent Organic Nanosheets: Reversible Exfoliation and Controlled Bacterial Growth. Angewandte Chemie - International Edition, 2020, 59, 8713-8719.	7.2	59
18	CO2 fixation by cycloaddition of mono/disubstituted epoxides using acyl amide decorated Co(II) MOF as a synergistic beterogeneous catalyst. Applied Catalysis A: General, 2020, 590, 117375	2.2	42

#	Article	IF	CITATIONS
19	Tuning the Ultra-Micropore Size of Fluorinated MOFs (M′F6-Ni-L) for CO2 Capture from Flue Gases by Advanced Computational Methods. Journal of Physical Chemistry C, 2020, 124, 16975-16989.	1.5	23
20	Rational Design of a Zn ^{II} MOF with Multiple Functional Sites for Highly Efficient Fixation of CO ₂ under Mild Conditions: Combined Experimental and Theoretical Investigation. Chemistry - A European Journal, 2020, 26, 17445-17454.	1.7	42
21	Oneâ€pot synthesis of [2+2]â€helicateâ€like macrocycle and 2+4â€î¼ ₄ â€oxo tetranuclear open fra complexes: Chiroptical properties and asymmetric oxidative coupling of 2â€naphthols. Applied Organometallic Chemistry, 2020, 34, e5666.	me 1.7	8
22	EVALUATION OF TETRA-n-BUTYLAMMONIUM BROMIDE AS CORROSION INHIBITOR FOR MILD STEEL IN 1N HCl MEDIUM: EXPERIMENTAL AND THEORETICAL INVESTIGATIONS. Rasayan Journal of Chemistry, 2020, 13, 499-513.	0.2	1
23	A DFT study on the interaction of small molecules with alkali metal ion-exchanged ETS-10. Zeitschrift Fur Kristallographie - Crystalline Materials, 2019, 234, 483-493.	0.4	1
24	Cycloaddition of CO ₂ with an Epoxide-Bearing Oxindole Scaffold by a Metal–Organic Framework-Based Heterogeneous Catalyst under Ambient Conditions. Inorganic Chemistry, 2019, 58, 10084-10096.	1.9	65
25	Water-Tolerant DUT-Series Metal–Organic Frameworks: A Theoretical–Experimental Study for the Chemical Fixation of CO ₂ and Catalytic Transfer Hydrogenation of Ethyl Levulinate to γ-Valerolactone. ACS Applied Materials & Interfaces, 2019, 11, 41458-41471.	4.0	55
26	Efficient catalytic conversion of terminal/internal epoxides to cyclic carbonates by porous Co(<scp>ii</scp>) MOF under ambient conditions: structure–property correlation and computational studies. Journal of Materials Chemistry A, 2019, 7, 2884-2894.	5.2	96
27	Computational prediction of promising pyrazine and bipyridine analogues of a fluorinated MOF platform, MFN-Ni-L (M = SI/AL; N = SIX/FIVE; L = pyr/bipyr), for CO2 capture under pre-humidified conditions. Physical Chemistry Chemical Physics, 2019, 21, 16127-16136.	1.3	13
28	lonicâ€Liquidâ€Functionalized UiOâ€66 Framework: An Experimental and Theoretical Study on the Cycloaddition of CO ₂ and Epoxides. ChemSusChem, 2019, 12, 1033-1042.	3.6	61
29	The effect of crystallite size on pressure amplification in switchable porous solids. Nature Communications, 2018, 9, 1573.	5.8	92
30	Metal-Organic Frameworks for Cultural Heritage Preservation: The Case of Acetic Acid Removal. ACS Applied Materials & Interfaces, 2018, 10, 13886-13894.	4.0	32
31	A promising metal–organic framework (MOF), MIL-96(Al), for CO ₂ separation under humid conditions. Journal of Materials Chemistry A, 2018, 6, 2081-2090.	5.2	78
32	Natural gas upgrading using a fluorinated MOF with tuned H2S and CO2 adsorption selectivity. Nature Energy, 2018, 3, 1059-1066.	19.8	214
33	Porous zinc and cobalt 2-nitroimidazolate frameworks with six-membered ring windows and a layered cobalt 2-nitroimidazolate polymorph. CrystEngComm, 2017, 19, 1377-1388.	1.3	6
34	Metal–organic frameworks to satisfy gas upgrading demands: fine-tuning the soc -MOF platform for the operative removal of H ₂ S. Journal of Materials Chemistry A, 2017, 5, 3293-3303.	5.2	94
35	Hydrolytically stable fluorinated metal-organic frameworks for energy-efficient dehydration. Science, 2017, 356, 731-735.	6.0	275
36	Gas/vapour separation using ultra-microporous metal–organic frameworks: insights into the structure/separation relationship. Chemical Society Reviews, 2017, 46, 3402-3430.	18.7	1,033

#	Article	IF	CITATIONS
37	Selective nitrogen capture by porous hybrid materials containing accessible transition metal ion sites. Nature Materials, 2017, 16, 526-531.	13.3	201
38	A Fine-Tuned MOF for Gas and Vapor Separation: A Multipurpose Adsorbent for Acid Gas Removal, Dehydration, and BTX Sieving. CheM, 2017, 3, 822-833.	5.8	83
39	N ₂ Capture Performances of the Hybrid Porous MIL-101(Cr): From Prediction toward Experimental Testing. Journal of Physical Chemistry C, 2017, 121, 22130-22138.	1.5	21
40	Diffusion of Carbon Dioxide and Nitrogen in the Smallâ€Pore Titanium Bis(phosphonate) Metal–Organic Framework MILâ€91 (Ti): A Combination of Quasielastic Neutron Scattering Measurements and Molecular Dynamics Simulations. ChemPhysChem, 2017, 18, 2739-2746.	1.0	11
41	Revisiting the Aluminum Trimesate-Based MOF (MIL-96): From Structure Determination to the Processing of Mixed Matrix Membranes for CO ₂ Capture. Chemistry of Materials, 2017, 29, 10326-10338.	3.2	78
42	Computational exploration of interesting gas adsorption/separation in MOFs. Acta Crystallographica Section A: Foundations and Advances, 2017, 73, C548-C548.	0.0	0
43	Current Trend in the Application of Nanoparticles for Waste Water Treatment and Purification: A Review. Current Organic Synthesis, 2017, 14, 206-226.	0.7	37
44	A pressure-amplifying framework material with negative gas adsorption transitions. Nature, 2016, 532, 348-352.	13.7	490
45	MIL-91(Ti), a small pore metal–organic framework which fulfils several criteria: an upscaled green synthesis, excellent water stability, high CO ₂ selectivity and fast CO ₂ transport. Journal of Materials Chemistry A, 2016, 4, 1383-1389.	5.2	82
46	Structure and properties of Al-MIL-53-ADP, a breathing MOF based on the aliphatic linker molecule adipic acid. Dalton Transactions, 2016, 45, 4179-4186.	1.6	54
47	The flexibility of modified-linker MIL-53 materials. Dalton Transactions, 2016, 45, 4162-4168.	1.6	37
48	C2-Hydrocarbon Adsorption in Nano-porous Faujasite: A DFT Study. Materials Today: Proceedings, 2015, 2, 436-445.	0.9	4
49	CO2 and N2 Adsorption in Nano-porous BEA Type Zeolite with Different Cations. Materials Today: Proceedings, 2015, 2, 446-455.	0.9	7
50	A density functional theory study on the interaction of paraffins, olefins, and acetylenes with Na-ETS-10. Theoretical Chemistry Accounts, 2015, 134, 1.	0.5	4
51	Highly Selective CO ₂ Capture by Small Pore Scandium-Based Metal–Organic Frameworks. Journal of Physical Chemistry C, 2015, 119, 23592-23598.	1.5	38
52	Understanding Gas Adsorption Selectivity in IRMOF-8 Using Molecular Simulation. ACS Applied Materials & Interfaces, 2015, 7, 624-637.	4.0	73
53	Molecular Simulation of the Adsorption of Methane in Engelhard Titanosilicate Frameworks. Langmuir, 2014, 30, 7435-7446.	1.6	8
54	Interaction of atmospheric gases with ETS-10: A DFT study. Microporous and Mesoporous Materials, 2014, 190, 38-45.	2.2	10

#	ARTICLE	IF	CITATIONS
55	Grand canonical Monte Carlo simulation and volumetric equilibrium studies for adsorption of nitrogen, oxygen, and argon in cadmium (II) exchanged zeolite A. Journal of Porous Materials, 2012, 19, 683-693.	1.3	9
56	CO2 and N2 adsorption in alkali metal ion exchanged X-Faujasite: Grand canonical Monte Carlo simulation and equilibrium adsorption studies. Microporous and Mesoporous Materials, 2012, 162, 143-151.	2.2	31
57	Sorption of nitrogen, oxygen, and argon in Cd (II) exchanged zeolite X: volumetric equilibrium adsorption and grand canonical Monte Carlo study. Journal of Porous Materials, 2011, 18, 113-124.	1.3	8
58	Computational Study for Water Sorption in AlPO ₄ -5 and AlPO ₄ -11 Molecular Sieves. Langmuir, 2010, 26, 1755-1764.	1.6	26
59	Ionic liquid as catalytic and reusable media for cyanoethoxycarbonylation of aldehydes. Catalysis Communications, 2010, 11, 907-912.	1.6	12
60	Sorption of CO, CH ₄ , and N ₂ in Alkali Metal Ion Exchanged Zeolite-X: Grand Canonical Monte Carlo Simulation and Volumetric Measurements. Industrial & Engineering Chemistry Research, 2010, 49, 5816-5825.	1.8	46
61	Sorption of Methane, Nitrogen, Oxygen, and Argon in ZSM-5 with different SiO2/Al2O3 Ratios: Grand Canonical Monte Carlo Simulation and Volumetric Measurements. Industrial & Engineering Chemistry Research, 2010, 49, 2353-2362.	1.8	45
62	A density functional theory study on the interaction of hydrogen molecule with MOF-177. Molecular Simulation, 2010, 36, 373-381.	0.9	9
63	Adsorption of hydrogen in nickel and rhodium exchanged zeolite X. International Journal of Hydrogen Energy, 2008, 33, 735-745.	3.8	70
64	Adsorption of carbon dioxide, methane, nitrogen, oxygen and argon in NaETS-4. Microporous and Mesoporous Materials, 2008, 113, 268-276.	2.2	87
65	Hydrogen uptake in palladium and ruthenium exchanged zeolite X. Journal of Alloys and Compounds, 2008, 466, 439-446.	2.8	22
66	Sorption of N2, O2, and Ar in Mn(II)-Exchanged Zeolites A and X Using Volumetric Measurements and Grand Canonical Monte Carlo Simulation. Industrial & Engineering Chemistry Research, 2007, 46, 6293-6302.	1.8	22
67	Correlation of Sorption Behavior of Nitrogen, Oxygen, and Argon with Ca ²⁺ Locations in Zeolite A:  A Grand Canonical Monte Carlo Simulation Study. Langmuir, 2007, 23, 8899-8908. 	1.6	19
68	Assembly of Discrete and Oligomeric Structures of Organotin Double-decker Silsesquioxanes: Inherent Stability Studies. New Journal of Chemistry, 0, , .	1.4	8