Samuel Refetoff

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7259629/publications.pdf

Version: 2024-02-01

450 papers

24,861 citations

82 h-index 132 g-index

460 all docs

460 docs citations

460 times ranked 11859 citing authors

#	Article	IF	CITATIONS
1	The Syndromes of Resistance to Thyroid Hormone*. Endocrine Reviews, 1993, 14, 348-399.	8.9	658
2	A Novel Syndrome Combining Thyroid and Neurological Abnormalities Is Associated with Mutations in a Monocarboxylate Transporter Gene. American Journal of Human Genetics, 2004, 74, 168-175.	2.6	613
3	Familial Syndrome Combining Deaf-Mutism, Stippled Epiphyses, Goiter and Abnormally High PBI: Possible Target Organ Refractoriness to Thyroid Hormone $<$ sup $>$ 1 $<$ sup $><$ sup $>2<$ sup $>$. Journal of Clinical Endocrinology and Metabolism, 1967, 27, 279-294.	1.8	560
4	Targeted Expression of BRAFV600E in Thyroid Cells of Transgenic Mice Results in Papillary Thyroid Cancers that Undergo Dedifferentiation. Cancer Research, 2005, 65, 4238-4245.	0.4	376
5	Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nature Genetics, 2005, 37, 1247-1252.	9.4	360
6	Modulation of glucose regulation and insulin secretion by circadian rhythmicity and sleep Journal of Clinical Investigation, 1991, 88, 934-942.	3.9	344
7	Resistance to Thyrotropin Caused by Mutations in the Thyrotropin-Receptor Gene. New England Journal of Medicine, 1995, 332, 155-160.	13.9	328
8	Generation of functional thyroid from embryonic stem cells. Nature, 2012, 491, 66-71.	13.7	319
9	Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. Journal of Clinical Investigation, 2011, 121, 4700-4711.	3.9	305
10	Identification of the Maturation Factor for Dual Oxidase. Journal of Biological Chemistry, 2006, 281, 18269-18272.	1.6	294
11	Tissue-Specific Thyroid Hormone Deprivation and Excess in Monocarboxylate Transporter (Mct) 8-Deficient Mice. Endocrinology, 2006, 147, 4036-4043.	1.4	286
12	Reduced Clearance Rate of Thyroxine-Binding Globulin (TBG) with Increased Sialylation: A Mechanism for Estrogen-Induced Elevation of Serum TBG Concentration*. Journal of Clinical Endocrinology and Metabolism, 1987, 65, 689-696.	1.8	264
13	Generalized resistance to thyroid hormone associated with a mutation in the ligand-binding domain of the human thyroid hormone receptor beta Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 8977-8981.	3.3	258
14	Fetal Loss Associated With Excess Thyroid Hormone Exposure. JAMA - Journal of the American Medical Association, 2004, 292, 691.	3.8	257
15	Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 13209-13214.	3.3	253
16	Syndromes of reduced sensitivity to thyroid hormone: genetic defects in hormone receptors, cell transporters and deiodination. Best Practice and Research in Clinical Endocrinology and Metabolism, 2007, 21, 277-305.	2.2	245
17	Genetic Analysis Reveals Different Functions for the Products of the Thyroid Hormone Receptor α Locus. Molecular and Cellular Biology, 2001, 21, 4748-4760.	1.1	239
18	Mice deficient in the steroid receptor co-activator $1(SRC-1)$ are resistant to thyroid hormone. EMBO Journal, 1999, 18, 1900-1904.	3 . 5	233

#	Article	IF	CITATIONS
19	Continuing Occurrence of Thyroid Carcinoma after Irradiation to the Neck in Infancy and Childhood. New England Journal of Medicine, 1975, 292, 171-175.	13.9	230
20	Thyroid Hormone Induces Rapid Activation of Akt/Protein Kinase B-Mammalian Target of Rapamycin-p70S6KCascade through Phosphatidylinositol 3-Kinase in Human Fibroblasts. Molecular Endocrinology, 2005, 19, 102-112.	3.7	224
21	Thyroid Dysfunction in Chronic Renal Failure. Journal of Clinical Investigation, 1977, 60, 522-534.	3.9	217
22	Parameters of Thyroid Function in Serum of 16 Selected Vertebrate Species: A Study of PBI, Serum T ₄ , Free T ₄ , and the Pattern of T ₄ and T ₃ Binding to Serum Proteins. Endocrinology, 1970, 86, 793-805.	1.4	203
23	The syndromes of reduced sensitivity to thyroid hormone. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3987-4003.	1.1	197
24	Torpor in mice is induced by both leptin-dependent and -independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 14623-14628.	3.3	193
25	Resistance to thyroid hormone. , 2000, 1, 97-108.		190
26	MEASURMENT OF CIRCULATING THYROID MICROSOMAL ANTIBODIES BY THE TANNED RED CELL HAEMAGGLUTINATION TECHNIQUE: ITS USEFULNESS IN THE DIAGNOSIS OF AUTOIMMUNE THYROID DISEASES. Clinical Endocrinology, 1976, 5, 115-125.	1.2	183
27	Thyrotrophin receptor signaling dependence of Braf-induced thyroid tumor initiation in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1615-1620.	3.3	183
28	Modeling Psychomotor Retardation using iPSCs from MCT8-Deficient Patients Indicates a Prominent Role for the Blood-Brain Barrier. Cell Stem Cell, 2017, 20, 831-843.e5.	5.2	181
29	Sleep Deprivation in the Rat: V. Energy Use and Mediation. Sleep, 1989, 12, 31-41.	0.6	180
30	Genetic causes of congenital hypothyroidism due to dyshormonogenesis. Current Opinion in Pediatrics, 2011, 23, 421-428.	1.0	177
31	American Thyroid Association Guide to Investigating Thyroid Hormone Economy and Action in Rodent and Cell Models. Thyroid, 2014, 24, 88-168.	2.4	173
32	Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion. Journal of Clinical Investigation, 2010, 120, 3377-3388.	3.9	161
33	Biallelic Inactivation of the Dual Oxidase Maturation Factor 2 (DUOXA2) Gene as a Novel Cause of Congenital Hypothyroidism. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 605-610. Thyroid Hormone Action on Liver, Heart, and Energy Expenditure in Thyroid Hormone Receptor	1.8	157
34	β-Deficient Mice**Presented in part at the 69th Annual Meeting of the American Thyroid Association Meeting, November 14–17, 1996, San Diego, California. This study was supported in part by the National Institutes of Health Grant DK-17050 and the Seymour J. Abrams Thyroid Research Center; a grant from the Ministry of Health and Welfare, Japan (to H.S.); and Grant-in-Aid for Scientific Research (09671044)	1.4	152
35	from the Minis. Endocrinology, 1998, 139, 4945-4952. International Union of Pharmacology. LIX. The Pharmacology and Classification of the Nuclear Receptor Superfamily: Thyroid Hormone Receptors. Pharmacological Reviews, 2006, 58, 705-711.	7.1	151
36	Studies of a sibship with apparent hereditary resistance to the intracellular action of thyroid hormone. Metabolism: Clinical and Experimental, 1972, 21, 723-756.	1.5	150

#	Article	IF	CITATIONS
37	Improved Radioimmunoassay for Measurement of Mouse Thyrotropin in Serum: Strain Differences in Thyrotropin Concentration and Thyrotroph Sensitivity to Thyroid Hormone. Thyroid, 1999, 9, 1265-1271.	2.4	149
38	Genetic immunization of outbred mice with thyrotropin receptor cDNA provides a model of Graves' disease. Journal of Clinical Investigation, 2000, 105, 803-811.	3.9	147
39	Importance of Monocarboxylate Transporter 8 for the Blood-Brain Barrier-Dependent Availability of 3,5,3′-Triiodo-l-Thyronine. Endocrinology, 2009, 150, 2491-2496.	1.4	142
40	Partial deficiency of Thyroid transcription factor 1 produces predominantly neurological defects in humans and mice. Journal of Clinical Investigation, 2002, 109, 469-473.	3.9	142
41	Inherited Thyroxine-Binding Globulin Abnormalities in Man*. Endocrine Reviews, 1989, 10, 275-293.	8.9	137
42	Thyroid Hormone Signaling Pathways: Time for a More Precise Nomenclature. Endocrinology, 2017, 158, 2052-2057.	1.4	134
43	Dominant Negative Transcriptional Regulation by a Mutant Thyroid Hormone Receptor- \hat{l}^2 in a Family with Generalized Resistance to Thyroid Hormone. Molecular Endocrinology, 1990, 4, 1988-1994.	3.7	130
44	Identical mutations in unrelated families with generalized resistance to thyroid hormone occur in cytosine-guanine-rich areas of the thyroid hormone receptor beta gene. Analysis of 15 families Journal of Clinical Investigation, 1993, 91, 2408-2415.	3.9	129
45	Evidence for Two Subtypes of Cushing's Disease Based on the Analysis of Episodic Cortisol Secretion. New England Journal of Medicine, 1985, 312, 1343-1349.	13.9	127
46	Molecular cloning of an orphan G-protein-coupled receptor that constitutively activates adenylate cyclase. Biochemical Journal, 1995, 309, 837-843.	1.7	121
47	Cytosolic Action of Thyroid Hormone Leads to Induction of Hypoxia-Inducible Factor- $1\hat{l}\pm$ and Glycolytic Genes. Molecular Endocrinology, 2005, 19, 2955-2963.	3.7	121
48	Interconnection between circadian clocks and thyroid function. Nature Reviews Endocrinology, 2019, 15, 590-600.	4.3	121
49	Thyrotropin controls transcription of the thyroglobulin gene Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 5941-5945.	3.3	119
50	Oncogenic Kras Requires Simultaneous PI3K Signaling to Induce ERK Activation and Transform Thyroid Epithelial Cells <i>In vivo</i> . Cancer Research, 2009, 69, 3689-3694.	0.4	118
51	Mutations of the Thyroid Hormone Transporter MCT8 Cause Prenatal Brain Damage and Persistent Hypomyelination. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2799-E2804.	1.8	117
52	Interrelationships in the Regulation of TSH and Prolactin Secretion in Man: Effects of L-Dopa, TRH and Thyroid Hormone in Various Combinations*. Journal of Clinical Endocrinology and Metabolism, 1974, 38, 450-457.	1.8	115
53	Effects of "Jet Lag―on Hormonal Patterns. I. Procedures, Variations in Total Plasma Proteins, and Disruption of Adrenocorticotropin-Cortisol Periodicity*. Journal of Clinical Endocrinology and Metabolism, 1981, 52, 628-641.	1.8	115
54	Transsphenoidal Surgery for Cushing Disease. Neurosurgery, 2012, 70, 70-81.	0.6	114

#	Article	IF	CITATIONS
55	Thyroid hormone mediated changes in gene expression can be initiated by cytosolic action of the thyroid hormone receptor \hat{l}^2 through the phosphatidylinositol 3-kinase pathway. Nuclear Receptor Signaling, 2006, 4, nrs.04020.	1.0	113
56	Attention-deficit hyperactivity disorder and thyroid function. Journal of Pediatrics, 1993, 123, 539-545.	0.9	111
57	Effects of ligand and thyroid hormone receptor isoforms on hepatic gene expression profiles of thyroid hormone receptor knockout mice. EMBO Reports, 2003, 4, 581-587.	2.0	110
58	Diiodothyropropionic Acid (DITPA) in the Treatment of MCT8 Deficiency. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 4515-4523.	1.8	110
59	Retrospective and prospective study of radiation-induced thyroid disease. American Journal of Medicine, 1983, 74, 852-862.	0.6	109
60	Regulation of Glycosaminoglycan Synthesis by Thyroid Hormone in Vitro. Journal of Clinical Investigation, 1982, 70, 1066-1073.	3.9	108
61	A Lack of Thyroid Hormones Rather than Excess Thyrotropin Causes Abnormal Skeletal Development in Hypothyroidism. Molecular Endocrinology, 2008, 22, 501-512.	3.7	107
62	Thyroid Hormone-Regulated Mouse Cerebral Cortex Genes Are Differentially Dependent on the Source of the Hormone: A Study in Monocarboxylate Transporter-8- and Deiodinase-2-Deficient Mice. Endocrinology, 2010, 151, 2381-2387.	1.4	105
63	Congenital hypothyroidism due to mutations in the sodium/iodide symporter. Identification of a nonsense mutation producing a downstream cryptic 3' splice site Journal of Clinical Investigation, 1998, 101, 1028-1035.	3.9	105
64	Reduced nuclear triiodothyronine receptors in starvation-induced hypothyroidism. Biochemical and Biophysical Research Communications, 1977, 79, 173-178.	1.0	102
65	THE ACTION OF THYROID HORMONE. Clinical Endocrinology, 1977, 6, 227-249.	1.2	102
66	Multifactorial control of the 24-hour secretory profiles of pituitary hormones. Journal of Endocrinological Investigation, 1985, 8, 381-391.	1.8	101
67	Hypogonadism Induced by a Transplantable, Prolactin-Producing Tumor in Male Rats: Hormonal and Morphological Studies ¹ . Endocrinology, 1974, 95, 991-998.	1.4	100
68	Clinical and Molecular Characterization of a Novel Selenocysteine Insertion Sequence-Binding Protein 2 (SBP2) Gene Mutation (R128X). Journal of Clinical Endocrinology and Metabolism, 2009, 94, 4003-4009.	1.8	100
69	Thyroid hormone action in the absence of thyroid hormone receptor DNA-binding in vivo. Journal of Clinical Investigation, 2003, 112, 588-597.	3.9	100
70	Inherited defects of thyroxine-binding proteins. Best Practice and Research in Clinical Endocrinology and Metabolism, 2015, 29, 735-747.	2.2	96
71	A Familial Thyrotropin (TSH) Receptor Mutation Provides in Vivo Evidence that the Inositol Phosphates/Ca2+ Cascade Mediates TSH Action on Thyroid Hormone Synthesis. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2816-2820.	1.8	95
72	A Thyroid Hormone Analog with Reduced Dependence on the Monocarboxylate Transporter 8 for Tissue Transport. Endocrinology, 2009, 150, 4450-4458.	1.4	95

#	Article	IF	CITATIONS
73	Homozygous Thyroid Hormone Receptor \hat{l}^2 -Gene Mutations in Resistance to Thyroid Hormone: Three New Cases and Review of the Literature. Journal of Clinical Endocrinology and Metabolism, 2012, 97, 1328-1336.	1.8	93
74	Noncanonical thyroid hormone signaling mediates cardiometabolic effects in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11323-E11332.	3.3	93
75	Partial deficiency of Thyroid transcription factor 1 produces predominantly neurological defects in humans and mice. Journal of Clinical Investigation, 2002, 109, 469-473.	3.9	93
76	Abnormalities of Triiodothyronine Binding to Lymphocyte and Fibroblast Nuclei from a Patient with Peripheral Tissue Resistance to Thyroid Hormone Action*. Journal of Clinical Endocrinology and Metabolism, 1978, 47, 1266-1272.	1.8	91
77	Aberrant Alternative Splicing of Thyroid Hormone Receptor in a TSH-Secreting Pituitary Tumor Is A Mechanism for Hormone Resistance. Molecular Endocrinology, 2001, 15, 1529-1538.	3.7	91
78	EFFECT OF THYROID HORMONE ON GROWTH. Endocrinology and Metabolism Clinics of North America, 1996, 25, 719-730.	1.2	89
79	Thyrotropin Regulation by Thyroid Hormone in Thyroid Hormone Receptor β-Deficient Mice ¹ . Endocrinology, 1997, 138, 3624-3629.	1.4	89
80	X–linked paroxysmal dyskinesia and severe global retardation caused by defective MCT8 gene. Journal of Neurology, 2005, 252, 663-666.	1.8	89
81	Ontogenetic patterns of thyrotropin-releasing hormone-like material in rat hypothalamus, pancreas, and retina: selective effect of light deprivation Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 4345-4348.	3.3	88
82	Sex Hormone-Binding Globulin in the Diagnosis of Peripheral Tissue Resistance to Thyroid Hormone: The Value of Changes after Short Term Triiodothyronine Administration*. Journal of Clinical Endocrinology and Metabolism, 1988, 66, 740-746.	1.8	86
83	Missense Mutations of Dual Oxidase 2 (DUOX2) Implicated in Congenital Hypothyroidism Have Impaired Trafficking in Cells Reconstituted with DUOX2 Maturation Factor. Molecular Endocrinology, 2007, 21, 1408-1421.	3.7	86
84	Tissue-Specific Posttranslational Modification Allows Functional Targeting of Thyrotropin. Cell Reports, 2014, 9, 801-809.	2.9	84
85	The pathogenic role of anti-thyroglobulin antibody on pregnancy: evidence from an active immunization model in mice. Human Reproduction, 2003, 18, 1094-1099.	0.4	83
86	Mice Deficient in Dual Oxidase Maturation Factors Are Severely Hypothyroid. Molecular Endocrinology, 2012, 26, 481-492.	3.7	83
87	Study of Four New Kindreds with Inherited Thyroxine-Binding Globulin Abnormalities POSSIBLE MUTATIONS OF A SINGLE GENE LOCUS. Journal of Clinical Investigation, 1972, 51, 848-867.	3.9	83
88	Dominant inheritance of resistance to thyroid hormone not linked to defects in the thyroid hormone receptor alpha or beta genes may be due to a defective cofactor. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 4196-4203.	1.8	83
89	Metabolism of L-Thyroxine (T ₄) and L-Triiodothyronine (T ₃) by Human Fibroblasts in Tissue Culture: Evidence for Cellular Binding Proteins and Conversion of T ₄ to T ₃ . Endocrinology, 1972, 91, 934-947.	1.4	82
90	Increased sensitivity to thyroid hormone in mice with complete deficiency of thyroid hormone receptor alpha. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 349-354.	3.3	82

#	Article	IF	CITATIONS
91	Type 3 Deiodinase Deficiency Results in Functional Abnormalities at Multiple Levels of the Thyroid Axis. Endocrinology, 2007, 148, 5680-5687.	1.4	82
92	Hypothyroidism in a Brazilian Kindred Due to Iodide Trapping Defect Caused by a Homozygous Mutation in the Sodium/Iodide Symporter Gene. Biochemical and Biophysical Research Communications, 1997, 240, 488-491.	1.0	80
93	Dominant Role of Thyrotropin-releasing Hormone in the Hypothalamic-Pituitary-Thyroid Axis. Journal of Biological Chemistry, 2006, 281, 5000-5007.	1.6	80
94	Resistance to Thyroid Hormone Caused by Two Mutant Thyroid Hormone Receptors β, R243Q and R243W, with Marked Impairment of Function That Cannot Be Explained by Altered (i>in Vitro (i>3,5,3′-Triiodothyroinine Binding Affinity (sup>1 (sup>). Journal of Clinical Endocrinology and Metabolism, 1997, 82, 1608-1614.	1.8	79
95	Thyroid Dysfunction Is Not Associated with Alterations in Serum Leptin Levels. Thyroid, 1997, 7, 407-409.	2.4	78
96	Screening of nineteen unrelated families with generalized resistance to thyroid hormone for known point mutations in the thyroid hormone receptor beta gene and the detection of a new mutation Journal of Clinical Investigation, 1991, 87, 496-502.	3.9	77
97	The Hypothyroidism in an Inbred Kindred with Congenital Thyroid Hormone and Glucocorticoid Deficiency is Due to a Mutation Producing a Truncated Thyrotropin Receptor. Thyroid, 1999, 9, 887-894.	2.4	76
98	Effects of "Jet Lag―on Hormonal Patterns. III. Demonstration of an Intrinsic Circadian Rhythmicity in Plasma Prolactin*. Journal of Clinical Endocrinology and Metabolism, 1982, 55, 849-857.	1.8	75
99	Thyrocyte-specific inactivation of <i>p53</i> and <i>Pten</i> results in anaplastic thyroid carcinomas faithfully recapitulating human tumors. Oncotarget, 2011, 2, 1109-1126.	0.8	75
100	Thyroid Hormone Responsive Genes in Cultured Human Fibroblasts. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 936-943.	1.8	74
101	Thyroid Transcription Factor 1 Rescues PAX8/p300 Synergism Impaired by a Natural PAX8 Paired Domain Mutation with Dominant Negative Activity. Molecular Endocrinology, 2005, 19, 1779-1791.	3.7	74
102	Suppression of Serum Thyrotropin (TSH) by <scp>l</scp> -Dopa in Chronic Hypothyroidism: Interrelationships in the Regulation of TSH and Prolactin Secretion 1. Journal of Clinical Endocrinology and Metabolism, 1973, 36, 256-262.	1.8	72
103	Effects of "Jet Lag ―on Hormonal Patterns. II. Adaptation of Melatonin Circadian Periodicity*. Journal of Clinical Endocrinology and Metabolism, 1981, 52, 642-649.	1.8	72
104	New insights on the mechanism(s) of the dominant negative effect of mutant thyroid hormone receptor in generalized resistance to thyroid hormone Journal of Clinical Investigation, 1992, 90, 1825-1831.	3.9	72
105	An Identical Missense Mutation in the Albumin Gene Results in Familial Dysalbuminemic Hyperthyroxinemia in Eight Unrelated Families. Biochemical and Biophysical Research Communications, 1994, 202, 781-787.	1.0	71
106	Five New Families with Resistance to Thyroid Hormone not Caused by Mutations in the Thyroid Hormone Receptor \hat{l}^2 Gene1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 3919-3928.	1.8	71
107	Effects of "Jet Lag―on Hormonal Patterns. IV. Time Shifts Increase Growth Hormone Release*. Journal of Clinical Endocrinology and Metabolism, 1983, 56, 433-440.	1.8	69
108	Selenium Supplementation Fails to Correct the Selenoprotein Synthesis Defect in Subjects with SBP2 Gene Mutations. Thyroid, 2009, 19, 277-281.	2.4	69

#	Article	IF	CITATIONS
109	Distinct Roles of Deiodinases on the Phenotype of Mct8 Defect: A Comparison of Eight Different Mouse Genotypes. Endocrinology, 2011, 152, 1180-1191.	1.4	69
110	The Differential Stimulatory Effect of Thyroid Hormone on Growth Hormone Synthesis and Estrogen on Prolactin Synthesis due to Accumulation of Specific Messenger Ribonucleic Acids*. Endocrinology, 1979, 104, 1083-1090.	1.4	68
111	Delineation of the Discontinuous-Conformational Epitope of a Monoclonal Antibody Displaying Fullin Vitroandin VivoThyrotropin Activity. Molecular Endocrinology, 2004, 18, 3020-3034.	3.7	67
112	Demonstration of rapid light-induced advances and delays of the human circadian clock using hormonal phase markers. American Journal of Physiology - Endocrinology and Metabolism, 1994, 266, E953-E963.	1.8	66
113	Changes in Thyroid Status During Perinatal Development of MCT8-Deficient Male Mice. Endocrinology, 2013, 154, 2533-2541.	1.4	66
114	Thyroid Function in a Uremic Rat Model. Journal of Clinical Investigation, 1980, 66, 946-954.	3.9	66
115	Two Different Mutations in the Thyroid Peroxidase Gene of a Large Inbred Amish Kindred: Power and Limits of Homozygosity Mapping 1. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 1061-1071.	1.8	64
116	Low TSH Requirement and Goiter in Transgenic Mice Overexpressing IGF-I and IGF-I Receptor in the Thyroid Gland. Endocrinology, 2001, 142, 5131-5139.	1.4	64
117	Treatment of Resistance to Thyroid Hormone–Primum Non Nocere. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 401-404.	1.8	64
118	Syndromes of thyroid hormone resistance. American Journal of Physiology - Endocrinology and Metabolism, 1982, 243, E88-E98.	1.8	63
119	Treatment of Resistance to Thyroid Hormone—Primum Non Nocere. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 401-404.	1.8	63
120	The Value of Serum Thyroglobulin Measurement in Clinical Practice. JAMA - Journal of the American Medical Association, 1983, 250, 2352.	3.8	62
121	Resistance to thyrotropin. Journal of Endocrinological Investigation, 2003, 26, 770-779.	1.8	62
122	Identification of a Functional Polymorphism of the Human Type 5 $17\hat{l}^2$ -Hydroxysteroid Dehydrogenase Gene Associated with Polycystic Ovary Syndrome. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 270-276.	1.8	62
123	Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism*. Journal of Clinical Endocrinology and Metabolism, 2014, 99, 768-770.	1.8	62
124	Radioimmunoassays Specific for the Tertiary and Primary Structures of Thyroxine-Binding Globulin (TBG): Measurement of Denatured TBG in Serum*. Journal of Clinical Endocrinology and Metabolism, 1984, 59, 269-277.	1.8	61
125	Sequence of the variant thyroxine-binding globulin of Australian aborigines. Only one of two amino acid replacements is responsible for its altered properties Journal of Clinical Investigation, 1989, 83, 1344-1348.	3.9	61
126	Reduced Triiodothyronine Content in Liver but Not Pituitary of the Uremic Rat Model: Demonstration of Changes Compatible with Thyroid Hormone Deficiency in Liver Only*. Endocrinology, 1984, 114, 280-286.	1.4	60

#	Article	IF	Citations
127	Variant thyroxine-binding globulin in serum of Australian Aborigines: its physical, chemical and biological properties. Journal of Endocrinological Investigation, 1985, 8, 225-232.	1.8	60
128	Mutations in the sodium/iodide symporter (NIS) gene as a cause for iodide transport defects and congenital hypothyroidism. Biochimie, 1999, 81, 469-476.	1.3	60
129	Thyroid Hormone Receptor \hat{l}_{\pm} and Regulation of Type 3 Deiodinase. Molecular Endocrinology, 2011, 25, 575-583.	3.7	60
130	Behavioral Effects of Liothyronine (L-T ₃) in Children with Attention Deficit Hyperactivity Disorder in the Presence and Absence of Resistance to Thyroid Hormone. Thyroid, 1997, 7, 389-393.	2.4	58
131	White matter abnormalities and dystonic motor disorder associated with mutations in the <i>SLC16A2</i> gene. Developmental Medicine and Child Neurology, 2010, 52, 475-482.	1.1	58
132	Autoimmunity in Patients with Resistance to Thyroid Hormone. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3189-3193.	1.8	58
133	Mutations of CpG dinucleotides located in the triiodothyronine (T3)-binding domain of the thyroid hormone receptor (TR) beta gene that appears to be devoid of natural mutations may not be detected because they are unlikely to produce the clinical phenotype of resistance to thyroid hormone lournal of Clinical Investigation, 1994, 94, 607-615.	3.9	58
134	Approach to the Patient with Resistance to Thyroid Hormone and Pregnancy. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3094-3102.	1.8	57
135	SWI/SNF Complex Mutations Promote Thyroid Tumor Progression and Insensitivity to Redifferentiation Therapies. Cancer Discovery, 2021, 11, 1158-1175.	7.7	57
136	Thyroid Hormone Action on Liver, Heart, and Energy Expenditure in Thyroid Hormone Receptor Â-Deficient Mice. Endocrinology, 1998, 139, 4945-4952.	1.4	57
137	Two Different Mutations in the Thyroid Peroxidase Gene of a Large Inbred Amish Kindred: Power and Limits of Homozygosity Mapping. Journal of Clinical Endocrinology and Metabolism, 1999, 84, 1061-1071.	1.8	57
138	Familial Thyroxine-Binding Globulin Deficiency in a Patient with Turner's Syndrome (XO). New England Journal of Medicine, 1968, 278, 1081-1087.	13.9	56
139	Congenital Central Isolated Hypothyroidism Caused by a Homozygous Mutation in the TSH- \hat{l}^2 Subunit Gene. Thyroid, 2000, 10, 387-391.	2.4	56
140	Search for Abnormalities of Nuclear Corepressors, Coactivators, and a Coregulator in Families with Resistance to Thyroid Hormone without Mutations in Thyroid Hormone Receptor \hat{l}^2 or \hat{l}^2 Genes ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 3609-3617.	1.8	56
141	Negative regulation by thyroid hormone receptor requires an intact coactivator-binding surface. Journal of Clinical Investigation, 2005, 115, 2517-2523.	3.9	56
142	Disappearance Rate of Endogenous and Exogenous Human Growth Hormone in Man. Journal of Clinical Endocrinology and Metabolism, 1970, 30, 386-392.	1.8	55
143	The consequences of inappropriate treatment because of failure to recognize the syndrome of pituitary and peripheral tissue resistance to thyroid hormone. Metabolism: Clinical and Experimental, 1983, 32, 822-834.	1.5	55
144	Replacement of Leu ²²⁷ by Pro in Thyroxine-Binding Globulin (TBG) Is Associated with Complete TBG Deficiency in Three of Eight Families with This Inherited Defect*. Journal of Clinical Endocrinology and Metabolism, 1990, 70, 804-809.	1.8	55

#	Article	IF	Citations
145	Hypothyroidism in Thyroid Transcription Factor 1 Haploinsufficiency Is Caused by Reduced Expression of the Thyroid-Stimulating Hormone Receptor. Molecular Endocrinology, 2003, 17, 2295-2302.	3.7	55
146	Failure of Membrane Targeting Causes the Functional Defect of Two Mutant Sodium Iodide Symporters ¹ . Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2366-2369.	1.8	54
147	Resistance to Thyrotropin (TSH) in Three Families Is not Associated with Mutations in the TSH Receptor or TSH. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3933-3940.	1.8	53
148	A rapid radioimmunoassay for human placental lactogen. American Journal of Obstetrics and Gynecology, 1968, 101, 874-885.	0.7	52
149	Resistance to Thyroid Hormone: An Historical Overview. Thyroid, 1994, 4, 345-349.	2.4	52
150	A Single Copy of the Recently Identified Dual Oxidase Maturation Factor (DUOXA) 1 Gene Produces Only Mild Transient Hypothyroidism in a Patient with a Novel Biallelic DUOXA2 Mutation and Monoallelic DUOXA1 Deletion. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E841-E845.	1.8	52
151	Diurnal rhythm in total serum thyroxine levels. Metabolism: Clinical and Experimental, 1971, 20, 782-791.	1.5	51
152	Cross-talk between PI3K and estrogen in the mouse thyroid predisposes to the development of follicular carcinomas with a higher incidence in females. Oncogene, 2010, 29, 5678-5686.	2.6	51
153	Defective Thyroid Hormone Feedback Regulation in the Syndrome of Peripheral Resistance to Thyroid Hormone*. Journal of Clinical Endocrinology and Metabolism, 1980, 51, 41-45.	1.8	50
154	Reduced Affinity for Thyroxine in Two of Three Structural Thyroxine-Binding Prealbumin Variants Associated with Familial Amyloidotic Polyneuropathy*. Journal of Clinical Endocrinology and Metabolism, 1986, 63, 1432-1437.	1.8	50
155	Preferential megalin-mediated transcytosis of low-hormonogenic thyroglobulin: A control mechanism for thyroid hormone release. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 14858-14863.	3.3	50
156	Resistance to Thyrotropin (TSH) in Three Families Is not Associated with Mutations in the TSH Receptor or TSH1. Journal of Clinical Endocrinology and Metabolism, 1997, 82, 3933-3940.	1.8	49
157	Steroid Receptor Coactivator-1 Deficiency Causes Variable Alterations in the Modulation of T ₃ -Regulated Transcription of Genes <i>i>in Vivo</i> . Endocrinology, 2002, 143, 1346-1352.	1.4	49
158	Response to challenge with gonadotropin-releasing hormone agonist in a mother and her two sons with a constitutively activating mutation of the luteinizing hormone receptor—a clinical research center study. Journal of Clinical Endocrinology and Metabolism, 1996, 81, 3802-3806.	1.8	49
159	Low Serum Free Thyroxine Index in Ambulating Elderly Is due to a Resetting of the Threshold of Thyrotropin Feedback Suppression*. Journal of Clinical Endocrinology and Metabolism, 1991, 73, 843-849.	1.8	47
160	A Novel Monocarboxylate Transporter 8 Gene Mutation as a Cause of Severe Neonatal Hypotonia and Developmental Delay. Pediatrics, 2008, 121, e199-e202.	1.0	47
161	GLIS3 is indispensable for TSH/TSHR-dependent thyroid hormone biosynthesis and follicular cell proliferation. Journal of Clinical Investigation, 2017, 127, 4326-4337.	3.9	47
162	Thyroxine-Binding Globulin: Organization of the Gene and Variants. Hormone Research, 1996, 45, 128-138.	1.8	46

#	Article	IF	Citations
163	Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism. Thyroid, 2014, 24, 407-409.	2.4	46
164	Polymorphism of a Variant Human Thyrotropin Receptor (hTSHR) Gene. Thyroid, 1994, 4, 147-149.	2.4	45
165	Congenital Secondary Hypothyroidism Caused by Exon Skipping due to a Homozygous Donor Splice Site Mutation in the TSHÎ ² -Subunit Gene. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 336-339.	1.8	45
166	The Syndrome of Inherited Partial SBP2 Deficiency in Humans. Antioxidants and Redox Signaling, 2010, 12, 905-920.	2.5	44
167	Resistance to Thyroid Hormone Beta: A Focused Review. Frontiers in Endocrinology, 2021, 12, 656551.	1.5	44
168	Homozygous loss-of-function mutations in SLC26A7 cause goitrous congenital hypothyroidism. JCI Insight, 2018, 3, .	2.3	44
169	Low TSH Requirement and Goiter in Transgenic Mice Overexpressing IGF-I and IGF-I Receptor in the Thyroid Gland. Endocrinology, 2001, 142, 5131-5139.	1.4	44
170	The Effect of Dexamethasone on the 24-Hour Profiles of Adrenocorticotropin and Cortisol in Cushing's Syndrome*. Journal of Clinical Endocrinology and Metabolism, 1985, 60, 527-535.	1.8	43
171	Effect of Total Sleep Deprivation on 5′-Deiodinase Activity of Rat Brown Adipose Tissue*. Endocrinology, 1990, 127, 882-890.	1.4	43
172	The Relationship between Episodic Variations of Plasma Prolactin and REM-Non-REM Cyclicity Is an Artifact*. Journal of Clinical Endocrinology and Metabolism, 1982, 54, 70-75.	1.8	42
173	Mosaicism of a Thyroid Hormone Receptor \hat{l}^2 Gene Mutation in Resistance to Thyroid Hormone. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 3471-3477.	1.8	42
174	Serum Antigens and Antibodies in the Diagnosis of Thyroid Cancer. Journal of Clinical Endocrinology and Metabolism, 1977, 45, 1220-1223.	1.8	41
175	Characterization of Thyroxine-Binding Globulin Secreted by a Human Hepatoma Cell Line*. Journal of Clinical Endocrinology and Metabolism, 1985, 60, 472-478.	1.8	41
176	Neonatal hypothyroidism and goiter in oneinfant of each of two sets of twins due to maternal therapy with antithyroid drugs. Journal of Pediatrics, 1974, 85, 240-244.	0.9	40
177	A Novel Thyroid Hormone Receptor- \hat{l}^2 Mutation That Fails to Bind Nuclear Receptor Corepressor in a Patient as an Apparent Cause of Severe, Predominantly Pituitary Resistance to Thyroid Hormone. Journal of Clinical Endocrinology and Metabolism, 2006, 91, 1887-1895.	1.8	40
178	Orcadian and Ultradian Variations of ACTH and Cortisol Secretion. Hormone Research, 1980, 13, 302-316.	1.8	39
179	Measurement of Thyroxine Uptake from Serum by Cultured Human Hepatocytes as an Index of Thyroid Status: Reduced Thyroxine Uptake from Serum of Patients with Nonthyf oidal Illness*. Journal of Clinical Endocrinology and Metabolism, 1985, 61, 1046-1052.	1.8	39
180	Complete thyroxine-binding globulin (TBG) deficiency caused by a single nucleotide deletion in the TBG gene. Metabolism: Clinical and Experimental, 1991, 40, 1231-1234.	1.5	39

#	Article	IF	CITATIONS
181	Regression of a Large Goiter in a Patient with Resistance to Thyroid Hormone by Every Other Day Treatment with Triiodothyronine. Thyroid, 2004, 14, 71-74.	2.4	39
182	Thyroid Hormone Inhibits Fibronectin Synthesis by Cultured Human Skin Fibroblsts*. Journal of Clinical Endocrinology and Metabolism, 1987, 64, 334-339.	1.8	38
183	Familial Dysalbuminemic Hypertriiodothyroninemia: A New, Dominantly Inherited Albumin Defect1. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 1448-1454.	1.8	38
184	Repulsive Separation of the Cytoplasmic Ends of Transmembrane Helices 3 and 6 Is Linked to Receptor Activation in a Novel Thyrotropin Receptor Mutant (M626I). Molecular Endocrinology, 2006, 20, 893-903.	3.7	38
185	Resistance to thyroid hormone: one of several defects causing reduced sensitivity to thyroid hormone. Nature Clinical Practice Endocrinology and Metabolism, 2008, 4, 1-1.	2.9	38
186	Mutations in the <i>NKX2.5 </i> Gene and the <i>PAX8 </i> Promoter in a Girl with Thyroid Dysgenesis. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E977-E981.	1.8	38
187	Mct8-Deficient Mice Have Increased Energy Expenditure and Reduced Fat Mass That Is Abrogated by Normalization of Serum T3 Levels. Endocrinology, 2013, 154, 4885-4895.	1.4	38
188	Failure of Membrane Targeting Causes the Functional Defect of Two Mutant Sodium Iodide Symporters. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2366-2369.	1.8	38
189	Relationship of Oligosaccharide Modification to the Cause of Serum Thyroxine-Binding Globulin Excess*. Journal of Clinical Endocrinology and Metabolism, 1988, 66, 1037-1043.	1.8	37
190	A Mutation Causing Reduced Biological Activity and Stability of Thyroxine-Binding Globulin Probably as a Result of Abnormal Glycosylation of the Molecule. Molecular Endocrinology, 1989, 3, 575-579.	3.7	37
191	Thyroid Hormone Resistance. Annual Review of Medicine, 1992, 43, 363-375.	5.0	37
192	Loss-of-Function Mutations in the Thyrotropin Receptor Gene as a Major Determinant of Hyperthyrotropinemia in a Consanguineous Community. Journal of Clinical Endocrinology and Metabolism, 2009, 94, 1706-1712.	1.8	37
193	Management of Differentiated Thyroid Cancer in the Presence of Resistance to Thyroid Hormone and TSH-Secreting Adenomas: A Report of Four Cases and Review of the Literature. Journal of Clinical Endocrinology and Metabolism, 2013, 98, 2210-2217.	1.8	37
194	Radioautographic localization of prolactin messenger RNA on histological sections by in situ hybridization. Brain Research, 1981, 211, 433-438.	1.1	36
195	The Influence of Percutaneous Fine Needle Aspiration on Serum Thyroglobulin*. Journal of Clinical Endocrinology and Metabolism, 1983, 56, 26-29.	1.8	36
196	Role of type 2 deiodinase in response to acute lung injury (ALI) in mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1321-E1329.	3.3	36
197	A Mouse Model Suggests Two Mechanisms for Thyroid Alterations in Infantile Cystinosis: Decreased Thyroglobulin Synthesis Due to Endoplasmic Reticulum Stress/Unfolded Protein Response and Impaired Lysosomal Processing. Endocrinology, 2015, 156, 2349-2364.	1.4	36
198	A Liver-Specific Thyromimetic, VK2809, Decreases Hepatosteatosis in Glycogen Storage Disease Type Ia. Thyroid, 2019, 29, 1158-1167.	2.4	36

#	Article	IF	Citations
199	Familial Dysalbuminemic Hypertriiodothyroninemia: A New, Dominantly Inherited Albumin Defect. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 1448-1454.	1.8	36
200	X-Chromosome-Linked Inheritance of the Variant Thyroxine-Binding Globulin in Australian Aborigines*. Journal of Clinical Endocrinology and Metabolism, 1985, 60, 356-360.	1.8	35
201	Classification and Proposed Nomenclature for Inherited Defects of Thyroid Hormone Action, Cell Transport, and Metabolism. European Thyroid Journal, 2014, 3, 7-9.	1.2	35
202	Thyroid follicle development requires Smad1/Smad5- and endothelial-dependent basement membrane assembly. Development (Cambridge), 2016, 143, 1958-70.	1.2	35
203	Congenital Secondary Hypothyroidism Caused by Exon Skipping due to a Homozygous Donor Splice Site Mutation in the TSHÁ-Subunit Gene. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 336-339.	1.8	35
204	Molecular basis of inherited thyroxine-binding globulin defects. Trends in Endocrinology and Metabolism, 1992, 3, 49-53.	3.1	34
205	Adeno Associated Virus 9–Based Gene Therapy Delivers a Functional Monocarboxylate Transporter 8, Improving Thyroid Hormone Availability to the Brain of Mct8-Deficient Mice. Thyroid, 2016, 26, 1311-1319.	2.4	34
206	Hematopoietic Stem Cells Transplantation Can Normalize Thyroid Function in a Cystinosis Mouse Model. Endocrinology, 2016, 157, 1363-1371.	1.4	34
207	The Radioiodination of Ribopolymers for Use in Hybridizational and Molecular Analyses. Journal of Biological Chemistry, 1974, 249, 2143-2150.	1.6	34
208	Two new inherited defects of the thyroxine-binding globulin (TBG) molecule presenting as partial TBG deficiency Journal of Clinical Investigation, 1987, 79, 833-840.	3.9	34
209	Distinct and Histone-Specific Modifications Mediate Positive versus Negative Transcriptional Regulation of TSHα Promoter. PLoS ONE, 2010, 5, e9853.	1.1	34
210	The Effects of Low Doses of Depot Estradiol and Testosterone in Teenagers with Ovarian Failure and Turner's Syndrome. Journal of Clinical Endocrinology and Metabolism, 1973, 37, 574-580.	1.8	33
211	THE EFFECT OF THYROID HORMONE ON GLYCOSAMINOGLYCAN ACCUMULATION IN HUMAN SKIN FIBROBLASTS. Endocrinology, 1981, 108, 2397-2399.	1.4	33
212	Nomenclature of thyroid hormone receptor beta-gene mutations in resistance to thyroid hormone: consensus statement from the first workshop on thyroid hormone resistance, July 10-11, 1993, Cambridge, United Kingdom Journal of Clinical Endocrinology and Metabolism, 1994, 78, 990-993.	1.8	33
213	Structure-Function Relationships of Two Loss-of-Function Mutations of the Thyrotropin Receptor Gene. Thyroid, 1999, 9, 995-1000.	2.4	33
214	Familial Dysalbuminemic Hyperthyroxinemia in a Swiss Family Caused by a Mutant Albumin (R218P) Shows an Apparent Discrepancy between Serum Concentration and Affinity for Thyroxine1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2786-2792.	1.8	33
215	Four New Cases of Congenital Secondary Hypothyroidism due to a Splice Site Mutation in the Thyrotropin-Î ² Gene: Phenotypic Variability and Founder Effect. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 4136-4141.	1.8	33
216	Clinical and genetic characteristics of congenital hypothyroidism due to mutations in the thyroid peroxidase (TPO) gene in Israelis. Clinical Endocrinology, 2007, 66, 695-702.	1.2	33

#	Article	IF	CITATIONS
217	Thyroid Regeneration: Characterization of Clear Cells After Partial Thyroidectomy. Endocrinology, 2012, 153, 2514-2525.	1.4	33
218	Resistance to thyrotropin. Best Practice and Research in Clinical Endocrinology and Metabolism, 2017, 31, 183-194.	2.2	33
219	Human thyroxine-binding globulin gene: complete sequence and transcriptional regulation. Molecular Endocrinology, 1993, 7, 1049-1060.	3.7	33
220	Serum Thyrotropin and Prolactin in the Syndrome of Generalized Resistance to Thyroid Hormone: Responses to Thyrotropin-Releasing Hormone Stimulation and Short Term Triiodothyronine Suppression*. Journal of Clinical Endocrinology and Metabolism, 1990, 70, 1305-1311.	1.8	32
221	Inherited defects of thyroid hormone-cell-membrane transport. Current Opinion in Endocrinology, Diabetes and Obesity, 2013, 20, 434-440.	1.2	32
222	Two Cases of Thyroid Dysgenesis Caused by Different Novel <i>PAX8</i> Mutations in the DNA-Binding Region: <i>In Vitro</i> Studies Reveal Different Pathogenic Mechanisms. Thyroid, 2013, 23, 791-796.	2.4	32
223	Long-Term Outcome of Loss-of-Function Mutations in Thyrotropin Receptor Gene. Thyroid, 2015, 25, 292-299.	2.4	32
224	TRH Action Is Impaired in Pituitaries of Male IGSF1-Deficient Mice. Endocrinology, 2017, 158, 815-830.	1.4	32
225	Familial Dysalbuminemic Hyperthyroxinemia in a Swiss Family Caused by a Mutant Albumin (R218P) Shows an Apparent Discrepancy between Serum Concentration and Affinity for Thyroxine. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 2786-2792.	1.8	32
226	Differentiation of two abnormalities in thyroid peroxidase causing organification defect and goitrous hypothyroidism. Metabolism: Clinical and Experimental, 1975, 24, 57-67.	1.5	31
227	Molecular basis for the properties of the thyroxine-binding globulin-slow variant in American Blacks. Journal of Endocrinological Investigation, 1990, 13, 343-349.	1.8	31
228	Pendred Syndrome in Two Galician Families: Insights into Clinical Phenotypes through Cellular, Genetic, and Molecular Studies. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 267-277.	1.8	31
229	Peroxidase Defect in Congenital Goiter with Complete Organification Block. Journal of Clinical Endocrinology and Metabolism, 1973, 36, 347-357.	1.8	30
230	Multiple complications of propylthiouracil treatment: granulocytopenia, eosinophilia, skin reaction and hepatitis with lymphocyte sensitization. Journal of Endocrinological Investigation, 1982, 5, 403-407.	1.8	30
231	Inherited Abnormality of Thyroxine-Binding Globulin with No Demonstrable Thyroxine-Binding Activity and High Serum Levels of Denatured Thyroxine-Binding Globulin. New England Journal of Medicine, 1986, 314, 694-699.	13.9	30
232	Multiple endocrine neoplasia 2A syndrome presenting as peripartum cardiomyopathy due to catecholamine excess. European Journal of Endocrinology, 2004, 151, 771-777.	1.9	30
233	NFE2-Related Transcription Factor 2 Coordinates Antioxidant Defense with Thyroglobulin Production and Iodination in the Thyroid Gland. Thyroid, 2018, 28, 780-798.	2.4	30
234	Graves' Disease Associated with Familial Deficiency of Thyroxine-Binding Globulin. Journal of Clinical Endocrinology and Metabolism, 1977, 44, 242-247.	1.8	29

#	Article	IF	CITATIONS
235	Hormonal Regulation of Glycosaminoglycan Accumulation in Fibroblasts from Patients with Resistance to Thyroid Hormone*. Journal of Clinical Endocrinology and Metabolism, 1983, 57, 1233-1239.	1.8	29
236	The Role of Glycosylation in the Molecular Conformation and Secretion of Thyroxine-Binding Globulin*. Endocrinology, 1986, 118, 1614-1621.	1.4	29
237	RXR receptor agonist suppression of thyroid function: central effects in the absence of thyroid hormone receptor. American Journal of Physiology - Endocrinology and Metabolism, 2002, 283, E326-E331.	1.8	29
238	Congenital Neonatal Hyperthyroidism Caused by Germline Mutations in the TSH Receptor Gene. Journal of Pediatric Endocrinology and Metabolism, 2008, 21, 479-86.	0.4	29
239	Human Genetics of Thyroid Hormone Receptor Beta: Resistance to Thyroid Hormone Beta (RTHβ). Methods in Molecular Biology, 2018, 1801, 225-240.	0.4	29
240	Thyrotropin Regulation by Thyroid Hormone in Thyroid Hormone Receptor Â-Deficient Mice. Endocrinology, 1997, 138, 3624-3629.	1.4	29
241	Low intelligence but not attention deficit hyperactivity disorder is associated with resistance to thyroid hormone caused by mutation R316H in the thyroid hormone receptor beta gene. Journal of Clinical Endocrinology and Metabolism, 1994, 78, 1525-1528.	1.8	29
242	Autoantibodies from patients with autoimmune thyroid disease do not interfere with the activity of the human iodide symporter gene stably transfected in CHO cells. European Journal of Endocrinology, 2001, 144, 611-618.	1.9	28
243	Characterization of T ₄ -Binding Globulin Cleaved by Human Leukocyte Elastase. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1217-1222.	1.8	28
244	Fetal Exposure to High Maternal Thyroid Hormone Levels Causes Central Resistance to Thyroid Hormone in Adult Humans and Mice. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3234-3240.	1.8	28
245	Autosomal Dominant Resistance to Thyrotropin as a Distinct Entity in Five Multigenerational Kindreds: Clinical Characterization and Exclusion of Candidate Loci. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 4025-4034.	1.8	27
246	Obatoclax overcomes resistance to cell death in aggressive thyroid carcinomas by countering Bcl2a1 and Mcl1 overexpression. Endocrine-Related Cancer, 2014, 21, 755-767.	1.6	27
247	The Thyroid Hormone Analog DITPA Ameliorates Metabolic Parameters of Male Mice With Mct8 Deficiency. Endocrinology, 2015, 156, 3889-3894.	1.4	27
248	Heterogeneous Human Prolactin from a Giant Pituitary Tumor in a Patient with Panhypopituitarism*. Journal of Clinical Endocrinology and Metabolism, 1978, 47, 780-787.	1.8	26
249	Dopaminergic control of prolactin mRNA accumulation in the pituitary of the male rat. Molecular and Cellular Endocrinology, 1981, 22, 25-30.	1.6	26
250	A New Inherited Abnormality of Thyroxine-Binding Globulin (TBG-San Diego) With Decreased Affinity for Thyroxine and Triiodothyronine*. Journal of Clinical Endocrinology and Metabolism, 1989, 68, 114-119.	1.8	26
251	Thyroid function and effect of aging in combined hetero/homozygous mice deficient in thyroid hormone receptors alpha and beta genes. Journal of Endocrinology, 2002, 172, 177-185.	1.2	26
252	Desensitization and Incomplete Recovery of Hepatic Target Genes After Chronic Thyroid Hormone Treatment and Withdrawal in Male Adult Mice. Endocrinology, 2016, 157, 1660-1672.	1.4	26

#	Article	IF	CITATIONS
253	Induction of Hypothyroidism and Hypoprolactinemia by Growth Hormone Producing Rat Pituitary Tumors. Endocrinology, 1977, 100, 216-226.	1.4	25
254	Detection of the Thyroxine-Binding Globulin (TBG) Gene in Six Unrelated Families With Complete TBG Deficiency*. Journal of Clinical Endocrinology and Metabolism, 1988, 67, 727-733.	1.8	25
255	Sleep Deprivation in the Rat: XI. The Effect of Guanethidine-Induced Sympathetic Blockade on the Sleep Deprivation Syndrome. Sleep, 1990, 13, 218-231.	0.6	25
256	Resistance to Thyroid Hormone in Subjects from Two Unrelated Families Is Associated with a Point Mutation in the Thyroid Hormone Receptor \hat{l}^2 Gene Resulting in the Replacement of the Normal Proline 453 with Serine. Thyroid, 1994, 4, 249-254.	2.4	25
257	The Coexistence of a Novel Inactivating Mutant Thyrotropin Receptor Allele with Two Thyroid Peroxidase Mutations: A Genotype-Phenotype Correlation. Journal of Clinical Endocrinology and Metabolism, 2011, 96, E1001-E1006.	1.8	25
258	Aberrant Cerebellar Development in Mice Lacking Dual Oxidase Maturation Factors. Thyroid, 2016, 26, 741-752.	2.4	25
259	Human Type 1 Iodothyronine Deiodinase (<i>DIO1</i>) Mutations Cause Abnormal Thyroid Hormone Metabolism. Thyroid, 2021, 31, 202-207.	2.4	25
260	The preparation of carrier-free iodine isotope-substituted cytosine nucleotides. Nucleic Acids and Protein Synthesis, 1974, 340, 446-451.	1.7	24
261	Effect of Estrogen on the Synthesis and Secretion of Thyroxine-Binding Globulin by a Human Hepatoma Cell Line, HEP G2. Molecular Endocrinology, 1988, 2, 313-323.	3.7	24
262	Resistance to Thyroid Hormone. Clinics in Laboratory Medicine, 1993, 13, 563-581.	0.7	24
263	Resistance to thyroid hormone associated with autoimmune thyroid disease in a Turkish family. Journal of Endocrinological Investigation, 2005, 28, 379-383.	1.8	24
264	TGB Deficiency: description of two novel mutations associated with complete TBG deficiency and review of the literature. Journal of Molecular Medicine, 2006, 84, 864-871.	1.7	24
265	Effects of Maternal Levels of Thyroid Hormone (TH) on the Hypothalamus-Pituitary-Thyroid Set Point: Studies in TH Receptor Î ² Knockout Mice. Endocrinology, 2007, 148, 5305-5312.	1.4	24
266	In Vivo Interaction of Steroid Receptor Coactivator (SRC)-1 and the Activation Function-2 Domain of the Thyroid Hormone Receptor (TR) \hat{I}^2 in TR \hat{I}^2 E457A Knock-In and SRC-1 Knockout mice. Endocrinology, 2009, 150, 3927-3934.	1.4	24
267	Prenatal Diagnosis of Resistance to Thyroid Hormone and Its Clinical Implications. Journal of Clinical Endocrinology and Metabolism, 2017, 102, 3775-3782.	1.8	24
268	Isoelectric Focusing of Variant Thyroxine-Binding Globulin in American Blacks: Increased Heat Lability and Reduced Serum Concentration*. Journal of Clinical Endocrinology and Metabolism, 1986, 63, 80-87.	1.8	23
269	Probing the Cause of Thyroid Dysgenesis. Thyroid, 1997, 7, 325-326.	2.4	23
270	Selective Pituitary Resistance to Thyroid Hormone Produced by Expression of a Mutant Thyroid Hormone Receptor \hat{l}^2 Gene in the Pituitary Gland of Transgenic Mice. Biochemical and Biophysical Research Communications, 1998, 245, 204-210.	1.0	23

#	Article	IF	CITATIONS
271	Congenital hypothyroidism due to a new deletion in the sodium/iodide symporter protein. Clinical Endocrinology, 2003, 59, 500-506.	1.2	23
272	Inherited defects of thyroid hormone metabolism. Annales D'Endocrinologie, 2011, 72, 95-98.	0.6	23
273	A Novel Mutation in the <i>Albumin</i> Gene (R218S) Causing Familial Dysalbuminemic Hyperthyroxinemia in a Family of Bangladeshi Extraction. Thyroid, 2014, 24, 945-950.	2.4	23
274	Transient Elevation of Serum Thyroid Hormone Concentration After Initiation of Replacement Therapy in Myxedema. Annals of Internal Medicine, 1980, 92, 491.	2.0	22
275	Resistance to Thyroid Hormone Diagnosed by the Reduced Response of Fibroblasts to the Triiodothyronine-Induced Suppression of Fibronectin Synthesis*. Journal of Clinical Endocrinology and Metabolism, 1987, 65, 242-246.	1.8	22
276	Complete Thyroxine-Binding Globulin (TBG) Deficiency Produced by a Mutation in Acceptor Splice Site Causing Frameshift and Early Termination of Translation (TBG-Kankakee) 12. Journal of Clinical Endocrinology and Metabolism, 1998, 83, 3604-3608.	1.8	22
277	Parameters of Thyroid Function in Maternal and Cord Serum at Term Pregnancy. Journal of Clinical Endocrinology and Metabolism, 1969, 29, 1276-1280.	1.8	21
278	Sequence of the variant thyroxine-binding globulin (TBG) in a Montreal family with partial TBG deficiency. Human Genetics, 1991, 87, 119-122.	1.8	21
279	Complete Deficiency of Thyroxine-Binding Globulin (TBG-CD Buffalo) Caused by a New Nonsense Mutation in the Thyroxine-Binding Globulin Gene. Thyroid, 1998, 8, 161-165.	2.4	21
280	Complete Thyroxine-Binding Globulin (TBG) Deficiency in Two Families without Mutations in Coding or Promoter Regions of the TBG Genes:In VitroDemonstration of Exon Skipping. Journal of Clinical Endocrinology and Metabolism, 2002, 87, 1045-1051.	1.8	21
281	Novel Biological and Clinical Aspects of Thyroid Hormone Metabolism. , 2007, 10, 127-139.		21
282	Reduced Sensitivity to Thyroid Hormone as a Transgenerational Epigenetic Marker Transmitted Along the Human Male Line. Thyroid, 2019, 29, 778-782.	2.4	21
283	A mouse model of resistance to thyroid hormone produced by somatic gene transfer of a mutant thyroid hormone receptor. Molecular Endocrinology, 1996, 10, 100-106.	3.7	21
284	Pretibial Myxedema â€" A Reversible Cause of Foot Drop Due to Entrapment of the Peroneal Nerve. New England Journal of Medicine, 1976, 294, 1383-1384.	13.9	20
285	Effects of aging on glucose regulation during wakefulness and sleep. American Journal of Physiology - Endocrinology and Metabolism, 1995, 269, E1006-E1016.	1.8	20
286	Three Novel Mutations Causing Complete T4-Binding Globulin Deficiency. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5039-5044.	1.8	20
287	Identification of a locus for nongoitrous congenital hypothyroidism on chromosome 15q25.3-26.1. Human Genetics, 2005, 118, 348-355.	1.8	20
288	Loss of Bioreactivity and Preservation of Immunoreactivity of Iodothyrotropin-Releasing Hormone*. Endocrinology, 1978, 103, 246-253.	1.4	19

#	Article	IF	Citations
289	Molecular cloning and primary structure of rat thyroxine-binding globulin. Biochemistry, 1991, 30, 5406-5411.	1.2	19
290	ADe NovoMutation in an Already Mutant Nucleotide of the Thyroid Hormone Receptor \hat{l}^2 Gene Perpetuates Resistance to Thyroid Hormone. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 1760-1767.	1.8	19
291	Placenta Passage of the Thyroid Hormone Analog DITPA to Male Wild-Type and Mct8-Deficient Mice. Endocrinology, 2014, 155, 4088-4093.	1.4	19
292	<i>DUOX2</i> Gene Mutation Manifesting as Resistance to Thyrotropin Phenotype. Thyroid, 2017, 27, 129-131.	2.4	19
293	Congenital Hypothyroidism due to Oligogenic Mutations in Two Sudanese Families. Thyroid, 2019, 29, 302-304.	2.4	19
294	Radioimmunoassay for Serum Triiodothyronine: Evaluation of Simple Techniques to Control Interference from Binding Proteins. Clinical Chemistry, 1974, 20, 1150-1154.	1.5	18
295	Increased Prevalence of <i>TG</i> and <i>TPO</i> Mutations in Sudanese Children With Congenital Hypothyroidism. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1564-1572.	1.8	18
296	Increased Hepatic Fat Content in Patients with Resistance to Thyroid Hormone Beta. Thyroid, 2021, 31, 1127-1134.	2.4	18
297	Complete Thyroxine-Binding Globulin (TBG) Deficiency Produced by a Mutation in Acceptor Splice Site Causing Frameshift and Early Termination of Translation (TBG-Kankakee). Journal of Clinical Endocrinology and Metabolism, 1998, 83, 3604-3608.	1.8	18
298	Chiari–Frommel Syndrome in a Patient with Primary Adrenocortical Insufficiency. New England Journal of Medicine, 1972, 287, 1326-1328.	13.9	17
299	Suppression of Elevated Serum TSH Levels in Hypothyroidism by Fusaric Acid. Journal of Clinical Endocrinology and Metabolism, 1977, 45, 95-98.	1.8	17
300	Variant thyroxine-binding globulin in serum of Australian Aborigines: a comparison with familial TBG deficiency in Caucasians and American Blacks. Journal of Endocrinological Investigation, 1985, 8, 217-224.	1.8	17
301	Molecular and Structural Characterization of the Heat-resistant Thyroxine-binding Globulin-Chicago. Journal of Biological Chemistry, 1995, 270, 28234-28238.	1.6	17
302	Responsiveness to Thyroid Hormone is Enhanced in Rat Hepatocytes Cultured as Spheroids Compared with that in Monolayers: Altered Responsiveness to Thyroid Hormone Possibly Involves Complex Formed on Thyroid Hormone Response Elements. Thyroid, 1999, 9, 959-967.	2.4	17
303	Resistance to thyroid hormone in the absence of mutations in the thyroid hormone receptor genes. Current Opinion in Endocrinology, Diabetes and Obesity, 2000, 7, 253-259.	0.6	17
304	Tissue responses to thyroid hormone in a kindred with resistance to thyroid hormone harboring a commonly occurring mutation in the thyroid hormone receptor \hat{l}^2 gene (P453T). Translational Research, 2005, 146, 85-94.	2.4	17
305	Sequencing of the variant thyroxine-binding globulin (TBG)-San Diego reveals two nucleotide substitutions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1992, 1139, 307-310.	1.8	16
306	A TSH \hat{l}^2 Variant with Impaired Immunoreactivity but Intact Biological Activity and Its Clinical Implications. Thyroid, 2015, 25, 869-876.	2.4	16

#	Article	IF	CITATIONS
307	FAMILIAL GOITRE WITH PARTIAL IODINE ORGANIFICATION DEFECT, LACK OF THYROGLOBULIN, AND HIGH LEVELS OF THYROID PEROXIDASE. Clinical Endocrinology, 1977, 6, 27-39.	1.2	15
308	Inherited Heat-Stable Variant Thyroxine-Binding Globulin (TBG-Chicago)â^—. Journal of Clinical Endocrinology and Metabolism, 1986, 63, 1140-1144.	1.8	15
309	Resistance to Thyroid Hormone Does Not Abrogate the Transient Thyrotoxicosis Associated with Gestation: Report of a Case. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 4273-4275.	1.8	15
310	Overexpression of Interleukin-4 in the Thyroid of Transgenic Mice Upregulates the Expression of <i>Duox1 </i> And the Anion Transporter Pendrin. Thyroid, 2016, 26, 1499-1512.	2.4	15
311	A Novel Thyroid Hormone Receptor Beta Gene Mutation (G251V) in a Thai Patient with Resistance to Thyroid Hormone Coexisting with Pituitary Incidentaloma. Thyroid, 2016, 26, 1804-1806.	2.4	15
312	An Essential Physiological Role for MCT8 in Bone in Male Mice. Endocrinology, 2017, 158, 3055-3066.	1.4	15
313	Clinical recognition and evaluation of patients with inherited serum thyroid hormone-binding protein mutations. Journal of Endocrinological Investigation, 2020, 43, 31-41.	1.8	15
314	Prenatal Treatment of Thyroid Hormone Cell Membrane Transport Defect Caused by MCT8 Gene Mutation. Thyroid, 2021, 31, 713-720.	2.4	15
315	Thyroid Function in Mice with Compound Heterozygous and Homozygous Disruptions of SRC-1 and TIF-2 Coactivators: Evidence for Haploinsufficiency. Endocrinology, 2002, 143, 1554-1554.	1.4	15
316	Phenotype Differences of Resistance to Thyroid Hormone in Two Unrelated Families with an Identical Mutation in the Thyroid Hormone Receptor \hat{l}^2 Gene (R320C). Thyroid, 1997, 7, 35-38.	2.4	14
317	AAV9-MCT8 Delivery at Juvenile Stage Ameliorates Neurological and Behavioral Deficits in a Mouse Model of MCT8-Deficiency. Thyroid, 2022, 32, 849-859.	2.4	14
318	EARLY IN VITRO INDUCTION OF RAT PITUITARY GH mRNA BY T ₃ 1. Endocrinology, 1978, 103, 1506-1509.	1.4	13
319	Nuclear thyroid hormone receptors in cultured human fibroblasts: Improved method of isolation, partial characterization, and interaction with chromatin. Metabolism: Clinical and Experimental, 1986, 35, 861-868.	1.5	13
320	Sleep Deprivation in the Rat: XIII. The Effect of Hypothyroidism on Sleep Deprivation Symptoms. Sleep, 1991, 14, 201-210.	0.6	13
321	Functional Characteristics of a Variant Thyrotropin Receptor. FEBS Journal, 1996, 238, 490-494.	0.2	13
322	Genomic organization of mouse ZAKI-4 gene that encodes ZAKI-4 alpha and beta isoforms, endogenous calcineurin inhibitors, and changes in the expression of these isoforms by thyroid hormone in adult mouse brain and heart. European Journal of Endocrinology, 2004, 150, 371-380.	1.9	13
323	Pituitary-Thyroid Setpoint and Thyrotropin Receptor Expression in Consomic Rats. Endocrinology, 2007, 148, 4727-4733.	1.4	13
324	Increased Oxidative Metabolism and Neurotransmitter Cycling in the Brain of Mice Lacking the Thyroid Hormone Transporter Slc16a2 (Mct8). PLoS ONE, 2013, 8, e74621.	1.1	13

#	Article	IF	Citations
325	Diagnostic Dilemma In Discordant Thyroid Function Tests Due To Thyroid Hormone Autoantibodies. AACE Clinical Case Reports, 2017, 3, e22-e25.	0.4	13
326	Oncogene-induced senescence and its evasion in a mouse model of thyroid neoplasia. Molecular and Cellular Endocrinology, 2018, 460, 24-35.	1.6	13
327	A novel mutation in the TG gene (G2322S) causing congenital hypothyroidism in a Sudanese family: a case report. BMC Medical Genetics, 2018, 19, 69.	2.1	13
328	Growth Hormone Responses to Thyroid Hormone in the Neonatal Rat. Journal of Clinical Investigation, 1981, 67, 569-574.	3.9	13
329	Isolation of Rat Prolactin Messenger Ribonucleic Acid and Synthesis of the Complementary Deoxyribonucleic Acid*. Endocrinology, 1979, 105, 1481-1487.	1.4	12
330	Modulation of Thyroglobulin Messenger RNA Accumulation in the Rat Thyroid*. Endocrinology, 1981, 109, 1650-1656.	1.4	12
331	Normal Cellular Uptake of Thyroxine From Serum of Patients With Familial Dysalbuminemic Hyperthyroxinemia or Elevated Thyroxine-Binding Globulin*. Journal of Clinical Endocrinology and Metabolism, 1988, 67, 1166-1170.	1.8	12
332	The Syndrome of Generalized Resistance to Thyroid Hormone (Grth). Endocrine Research, 1989, 15, 717-743.	0.6	12
333	Clinical and Genetic Aspects of Resistance to Thyroid Hormone. , 1992, 2, 261-272.		12
334	A New Mutation in the Thyroid Hormone Receptor (TR) \hat{l}^2 Gene (V458A) in a Family with Resistance to Thyroid Hormone (RTH). Thyroid, 1996, 6, 311-312.	2.4	12
335	A Novel Point Mutation in Cluster 3 of the Thyroid Hormone Receptor \hat{l}^2 Gene (P247L) Causing Mild Resistance to Thyroid Hormone. Thyroid, 1999, 9, 1195-1203.	2.4	12
336	Defective thyroglobulin storage in LDL receptor-associated protein-deficient mice. American Journal of Physiology - Cell Physiology, 2006, 290, C1160-C1167.	2.1	12
337	A clinically euthyroid child with a large goiter due to a thyroglobulin gene defect: clinical features and genetic studies. Journal of Pediatric Endocrinology and Metabolism, 2013, 26, 119-23.	0.4	12
338	A Novel Mechanism of Inherited TBG Deficiency: Mutation in a Liver-Specific Enhancer. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E173-E181.	1.8	12
339	Mutation in the Thyroid Hormone Receptor (TR) \hat{l}^2 Gene (M313T) Not Previously Reported in Two Unrelated Families with Resistance to Thyroid Hormone (RTH). Thyroid, 1996, 6, 571-573.	2.4	11
340	Characterization and primary structures of bovine and porcine thyroxine-binding globulin. Molecular and Cellular Endocrinology, 2002, 186, 27-35.	1.6	11
341	Partial Deficiency of Thyroxine-Binding Globulin-Allentown Is Due to a Mutation in the Signal Peptide. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2477-2483.	1.8	11
342	Intracerebroventricular administration of the thyroid hormone analog TRIAC increases its brain content in the absence of MCT8. PLoS ONE, 2019, 14, e0226017.	1.1	11

#	Article	IF	CITATIONS
343	Endemic Goiter with Hypothyroidism in Three Generations. Journal of Clinical Endocrinology and Metabolism, 1969, 29, 1596-1600.	1.8	10
344	Thyroid Hormone Therapy. Medical Clinics of North America, 1975, 59, 1147-1162.	1.1	10
345	Resistance to thyroid hormone and its molecular basis. Pediatrics International, 1994, 36, 1-15.	0.2	10
346	Stanniocalcin 1 Induction by Thyroid Hormone Depends on Thyroid Hormone Receptor \hat{l}^2 and Phosphatidylinositol 3-kinase Activation. Experimental and Clinical Endocrinology and Diabetes, 2011, 119, 81-85.	0.6	10
347	Incidental Identification of a Thyroid Hormone Receptor Beta (<i>THRB</i>) Gene Variant in a Family with Autoimmune Thyroid Disease. Thyroid, 2013, 23, 1638-1643.	2.4	10
348	A Novel Mutation (S54C) of the <i>PAX8</i> Gene in a Family with Congenital Hypothyroidism and a High Proportion of Affected Individuals. Hormone Research in Paediatrics, 2016, 86, 137-142.	0.8	10
349	Novel Mutations in the NKX2.1 gene and the PAX8 gene in a Boy with Brain-Lung-Thyroid Syndrome. Experimental and Clinical Endocrinology and Diabetes, 2018, 126, 85-90.	0.6	10
350	Free Thyroxine Concentrations in Sera of Individuals with Familial Dysalbuminemic Hyperthyroxinemia: A Comparison of Three Methods of Measurement. Thyroid, 2020, 30, 37-41.	2.4	10
351	A new point mutation (C446R) in the thyroid hormone receptor-beta gene of a family with resistance to thyroid hormone. Journal of Clinical Endocrinology and Metabolism, 1994, 78, 1253-1256.	1.8	10
352	Nomenclature of thyroid hormone receptor-l̂² gene mutations in resistance to thyroid hormone: consensus statement from the First Workshop on Thyroid Hormone Resistance, 10–11th July 1993, Cambridge, UK. European Journal of Endocrinology, 1994, 130, 426-428.	1.9	9
353	Nomenclature of thyroid hormone receptor μ gene mutations in resistance to thyroid hormone: consensus statement from the First Workshop on Thyroid Hormone Resistance, 10–11 July 1993, Cambridge, UK. Clinical Endocrinology, 1994, 40, 697-700.	1.2	9
354	Identification of Thyroxine-Binding Globulin-San Diego in a Family from Houston and Its Characterization by in Vitro Expression Using Xenopus Oocytes1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 368-372.	1.8	9
355	Resistance to Thyroid Hormone in a Patient with Thyroid Dysgenesis. Thyroid, 2005, 15, 730-733.	2.4	9
356	A Somatic Gain-of-Function Mutation in the Thyrotropin Receptor Gene Producing a Toxic Adenoma in an Infant. Thyroid, 2009, 19, 187-191.	2.4	9
357	Comparison of Thyroidectomized Calf Serum and Stripped Serum for the Study of Thyroid Hormone Action in Human Skin Fibroblasts <i>In Vitro</i> In Vitro In Vi	2.4	9
358	Intranasal delivery of Thyroid hormones in MCT8 deficiency. PLoS ONE, 2020, 15, e0236113.	1.1	9
359	Mice Hypomorphic for (i>Keap1 , a Negative Regulator of the Nrf2 Antioxidant Response, Show Age-Dependent Diffuse Goiter with Elevated Thyrotropin Levels. Thyroid, 2021, 31, 23-35.	2.4	9
360	latrogenic Hydrothorax. Annals of Internal Medicine, 1965, 63, 869.	2.0	9

#	Article	IF	Citations
361	Gene screening in Japanese families with complete deficiency of thyroxine-binding globulin demonstrates that a nucleotide deletion at codon 352 may be a race specific mutation. Clinical Endocrinology, 1994, 40, 221-226.	1.2	8
362	Sleep Deprivation in the Rat: XIX. Effects of Thyroxine Administration. Sleep, 1995, 18, 317-324.	0.6	8
363	Expression of Thyroid Peroxidase in EBV-Transformed B Cell Lines Using Adenovirus. Thyroid, 1996, 6, 23-28.	2.4	8
364	Unique regulation of thyroid hormone metabolism during fasting in the house musk shrew (Suncus) Tj ETQq0 0	0 rgBT /Ον	verlock 10 Tf
365	A Novel Mutation in the TBG Gene Producing Partial Thyroxine-Binding Globulin Deficiency (Glencoe) Identified in 2 Families. European Thyroid Journal, 2017, 6, 138-142.	1.2	8
366	Chapter 19 Radioiodine Labeling of Ribopolymers for Special Applications in Biology. Methods in Cell Biology, 1975, 10, 343-359.	0.5	7
367	Simultaneous translation of growth hormone and prolactin messenger RNA from rat pituitary tumor cells. FEBS Letters, 1976, 70, 175-179.	1.3	7
368	Mutation in the Thyroid Hormone Receptor \hat{l}^2 Gene (A317T) in a Thai Subject with Resistance to Thyroid Hormone. Thyroid, 1997, 7, 905-907.	2.4	7
369	Modification of thyroid hormone and 9-cis retinoic acid signaling by overexpression of their cognate receptors using adenoviral vector. Molecular and Cellular Endocrinology, 1997, 131, 59-66.	1.6	7
370	Resistance to Thyroid Hormone Caused by a New Mutation (V336M) in the Thyroid Hormone Receptor \hat{l}^2 Gene. Thyroid, 1999, 9, 1001-1004.	2.4	7
371	Congenital hypothyroidism in a child with unsuspected familial dysalbuminemic hyperthyroxinemia caused by a mutation (R218H) in the human albumin gene. Journal of Pediatrics, 2001, 139, 887-891.	0.9	7
372	Familial Juvenile Autoimmune Hypothyroidism, Pituitary Enlargement, Obesity, and Insulin Resistance. Thyroid, 2004, 14, 311-319.	2.4	7
373	Familial dysalbuminemic hyperthyroxinemia in a 4-year-old girl with hyperactivity, palpitations and advanced dental age: how gold standard assays may be misleading. Journal of Pediatric Endocrinology and Metabolism, 2015, 28, 241-5.	0.4	7
374	Changes in Hepatic TRÎ ² Protein Expression, Lipogenic Gene Expression, and Long-Chain Acylcarnitine Levels During Chronic Hyperthyroidism and Triiodothyronine Withdrawal in a Mouse Model. Thyroid, 2017, 27, 852-860.	2.4	7
375	Measurement of Reverse Triiodothyronine Level and the Triiodothyronine to Reverse Triiodothyronine Ratio in Dried Blood Spot Samples at Birth May Facilitate Early Detection of Monocarboxylate Transporter 8 Deficiency. Thyroid, 2021, 31, 1316-1321.	2.4	7
376	A Novel Point Mutation of Thyroid Hormone Receptor \hat{l}^2 Gene in a Family with Resistance to Thyroid Hormone. Thyroid, 1997, 7, 771-773.	2.4	6
377	Coexistence of <i>THRB </i> and <i>TBG </i> Gene Mutations in a Turkish Family. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1148-E1151.	1.8	6
378	A new $TR\hat{l}^2$ mutation in resistance to thyroid hormone syndrome. Hormones, 2016, 15, 534-539.	0.9	6

#	Article	IF	Citations
379	Identification of Thyroxine-Binding Globulin-San Diego in a Family from Houston and Its Characterization by in Vitro Expression Using Xenopus Oocytes. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 368-372.	1.8	6
380	Three Novel Mutations Causing Complete T4-Binding Globulin Deficiency. Journal of Clinical Endocrinology and Metabolism, 2001, 86, 5039-5044.	1.8	6
381	Diverse Abnormalities of the c-erbAβ Thyroid Hormone Receptor Gene in Generalized Thyroid Hormone Resistance. Advances in Experimental Medicine and Biology, 1991, 299, 251-258.	0.8	6
382	The syndrome of resistance to thyroid stimulating hormone. Journal of the Chinese Medical Association, 2003, 66, 441-52.	0.6	6
383	Radioimmunoassay detection of endorphins from long-term culture of human pituitary tumour cells. European Journal of Endocrinology, 1982, 99, 174-178.	1.9	5
384	Leukocyte alkaline phosphatase in hypothyroidism and hyperthyroidism. Response to initiation of thyroxine replacement therapy. Metabolism: Clinical and Experimental, 1989, 38, 311-314.	1.5	5
385	Type 1 iodothyronine deiodinase in the house musk shrew (Suncus murinus, Insectivora: Soricidae): cloning and characterization of complementary DNA, unique tissue distribution and regulation by T3. General and Comparative Endocrinology, 2002, 127, 48-58.	0.8	5
386	A novel splice variant involving the $5\hat{a} \in \mathbb{T}$ untranslated region of thyroid hormone receptor \hat{l}^21 (TR \hat{l}^21). Journal of Endocrinological Investigation, 2004, 27, 318-322.	1.8	5
387	Thyroid Hormone Receptor Beta Gene Mutation (P453A) in a Family Producing Resistance to Thyroid Hormone. Experimental and Clinical Endocrinology and Diabetes, 2009, 117, 34-37.	0.6	5
388	Disruption of the Melanin-Concentrating Hormone Receptor 1 (MCH1R) Affects Thyroid Function. Endocrinology, 2012, 153, 6145-6154.	1.4	5
389	A new family with an activating mutation (G431S) in the TSH receptor gene: a phenotype discussion and review of the literature. International Journal of Pediatric Endocrinology (Springer), 2014, 2014, 23.	1.6	5
390	Very Severe Resistance to Thyroid Hormone \hat{l}^2 in One of Three Affected Members of a Family with a Novel Mutation in the <i>THRB</i> Gene. Thyroid, 2019, 29, 1518-1520.	2.4	5
391	Increased Anaplastic Lymphoma Kinase Activity Induces a Poorly Differentiated Thyroid Carcinoma in Mice. Thyroid, 2019, 29, 1438-1446.	2.4	5
392	A Novel G385E Variant in the Cold Region of the T3-Binding Domain of Thyroid Hormone Receptor Beta Gene and Investigations to Assess Its Clinical Significance. European Thyroid Journal, 2019, 8, 293-297.	1.2	5
393	XB130 Deficiency Causes Congenital Hypothyroidism in Mice due to Disorganized Apical Membrane Structure and Function of Thyrocytes. Thyroid, 2021, 31, 1650-1661.	2.4	5
394	Resistance to Thyroid Hormone in the Absence of Mutations in the Thyroid Hormone Receptor Genes. Growth Hormone, 2004, , 89-107.	0.2	5
395	Thyroid Hormone Transport Proteins: Thyroxine-Binding Globulin, Transthyretin, and Albumin. , 2003, , 483-490.		5
396	Severe Resistance to Thyroid Hormone Beta in a Patient with Athyreosis. Thyroid, 2022, 32, 336-339.	2.4	5

#	Article	IF	CITATIONS
397	Thyroid hormone relationships between maternal and fetal circulations in human pregnancy at term: A study in patients with normal and abnormal thyroid function. American Journal of Obstetrics and Gynecology, 1970, 108, 1269-1276.	0.7	4
398	How Clinical Observations of a Congenital Disease Can Be Translated in Terms of Molecular Biology. Perspectives in Biology and Medicine, 1994, 37, 315-326.	0.3	4
399	A New Case of Resistance to Thyroid Hormone Caused by a De Novo P453T Mutation in the Thyroid Hormone Receptor Gene in an Israeli Child. Thyroid, 2003, 13, 409-412.	2.4	4
400	Thyroid Hormones and Their Receptors: From Development to Disease. Journal of Thyroid Research, 2011, 2011, 1-2.	0.5	4
401	Homozygous Mutation in Human Serum Albumin and Its Implication on Thyroid Tests. Thyroid, 2018, 28, 811-814.	2.4	4
402	Sorting Variants of Unknown Significance Identified by Whole Exome Sequencing: Genetic and Laboratory Investigations of Two Novel <i>MCT8</i> Variants. Thyroid, 2020, 30, 463-465.	2.4	4
403	Insertion of an Alu Element in Thyroglobulin Gene as a Novel Cause of Congenital Hypothyroidism. Thyroid, 2020, 30, 780-782.	2.4	4
404	Early Diagnosis and Treatment of an Infant with a Novel Thyroid Hormone Receptor α Gene (pC380SfsX9) Mutation. Thyroid, 2021, 31, 1003-1005.	2.4	4
405	XB130 Plays an Essential Role in Folliculogenesis Through Mediating Interactions Between Microfilament and Microtubule Systems in Thyrocytes. Thyroid, 2022, 32, 128-137.	2.4	4
406	Iodination-deiodination. Nucleic Acids and Protein Synthesis, 1977, 475, 337-351.	1.7	3
407	Nomenclature of Thyroid Hormone Receptor β Mutations in Resistance to Thyroid Hormone: Consensus Statement from the First Workshop on Thyroid Hormone Resistance, July 10–11th 1993, Cambridge, U.K Thyroid, 1994, 4, 135-137.	2.4	3
408	Evaluation of Pituitary and Peripheral Tissue Markers of Thyroid Hormone Action in an Iranian Family With Resistance to Thyroid Hormone. Thyroid, 1996, 6, 589-593.	2.4	3
409	The Syndrome of Resistance to Thyroid Hormone, Misdiagnosed and Treated as Thyrotoxicosis. Endocrine Practice, 1998, 4, 391-395.	1.1	3
410	Analysis of the PAX8 Gene in Congenital Hypothyroidism Caused by Different Forms of Thyroid Dysgenesis in a Father and Daughter. Journal of Pediatric Endocrinology and Metabolism, 2004, 17, 1021-9.	0.4	3
411	A case of resistance to thyroid hormone without mutation in the thyroid hormone receptor beta. Irish Journal of Medical Science, 2005, 174, 60-64.	0.8	3
412	Congenital Defects of Thyroid Hormone Synthesis. , 2010, , 87-327.		3
413	Syndromes of Impaired Sensitivity to Thyroid Hormone. , 2016, , 137-151.		3
414	Class III PI3K Vps34 Controls Thyroid Hormone Production by Regulating Thyroglobulin Iodination, Lysosomal Proteolysis, and Tissue Homeostasis. Thyroid, 2020, 30, 133-146.	2.4	3

#	Article	IF	Citations
415	Triiodothyroacetic Acid Cross-Reacts With Measurement of Triiodothyronine (T3) on Various Immunoassay Platforms. American Journal of Clinical Pathology, 2021, , .	0.4	3
416	Syndromes of Reduced Sensitivity to Thyroid Hormone., 2010,, 105-330.		2
417	Thyroid Function Testing. , 2016, , 1350-1398.e11.		2
418	Thyroid Hormone Resistance Syndromes. , 2019, , 741-749.		2
419	Pathogenesis of multinodular goiter in elderly XB130 deficient mice: alteration of thyroperoxidase affinity with iodide and hydrogen peroxide. Thyroid, 2021, , .	2.4	2
420	Maintaining the thyroid gland in mutant thyroglobulin–induced hypothyroidism requires thyroid cell proliferation that must continue in adulthood. Journal of Biological Chemistry, 2022, 298, 102066.	1.6	2
421	Postirradiation Screening for Thyroid Nodules. JAMA - Journal of the American Medical Association, 1980, 243, 1131.	3.8	1
422	Inherited X chromosome linked thyroxine-binding globulin (TBG) deficiency in a homozygous female. Journal of Endocrinological Investigation, 1980, 3, 349-352.	1.8	1
423	Direct application of radioiodinated aminoacyl tRNA for radiolabeling nascent proteins. Analytical Biochemistry, 1985, 147, 503-510.	1.1	1
424	Partial thyroxine-binding globulin (TBG) deficiency in a family with no detectable mutation of the TBG gene. Clinical Endocrinology, 2003, 59, 824-825.	1.2	1
425	The Effect of Short-Term Treatment with Recombinant Human Thyroid-Stimulating Hormones on Leydig Cell Function in Men. Thyroid, 2003, 13, 649-652.	2.4	1
426	Syndromes of Resistance to Thyroid Hormone. , 2009, , 299-315.		1
427	Consecutive Mutational Events in a TSHR Allele of Arab Families with Resistance to Thyroid Stimulating Hormone. Thyroid, 2012, 22, 252-257.	2.4	1
428	Congenital Defects of Thyroid Hormone Synthesis. , 2016, , 117-125.		1
429	163. Hematopoietic Stem Cells Transplantation Can Normalize Thyroid Function in a Cystinosis Mouse Model. Molecular Therapy, 2016, 24, S64.	3.7	1
430	Diiodothyropropionic acid (DITPA) cross-reacts with thyroid function assays on different immunoassay platforms. Clinica Chimica Acta, 2016, 453, 203-204.	0.5	1
431	13th International Workshop on Resistance to Thyroid Hormone and Thyroid Hormone Action. Thyroid, 2018, 28, 690-691.	2.4	1
432	Central Congenital Hypothyroidism Caused by a Novel Mutation, C47W, in the Cysteine Knot Region of TSHÎ ² . Hormone Research in Paediatrics, 2019, 92, 390-394.	0.8	1

#	Article	IF	CITATIONS
433	Nonautoimmune Hyperthyroidism Caused by a Somatic Mosaic GNAS Mutation Involving Part of the Thyroid Gland. Thyroid, 2020, 30, 640-642.	2.4	1
434	Novel DIO1 Gene Mutation Acting as Phenotype Modifier for Novel Compound Heterozygous TPO Gene Mutations Causing Congenital Hypothyroidism. Thyroid, 2021, 31, 1589-1591.	2.4	1
435	Thyroid Function Testing. , 2010, , 1444-1492.		1
436	Thyroid follicle development requires Smad1/Smad5- and endothelial-dependent basement membrane assembly. Journal of Cell Science, 2016, 129, e1.1-e1.1.	1.2	1
437	Resistance to Thyroid Hormones and Screening for High Thyroxine at Birth. , 1989, , 165-172.		1
438	Insufficiency of Levothyroxine Therapy in Autoimmune Hypothyroidism: Effect of Glucocorticoid Administration. Acta Endocrinologica, 2017, 13, 515-518.	0.1	1
439	TSHB R75G is a founder variant and prevalent cause of low or undetectable TSH in Indian Jews. European Thyroid Journal, 2022, 11, .	1.2	1
440	Thyroidal Transcriptomic Profiles of Pathoadaptive Responses to Congenital Hypothyroidism in XB130 Knockout Mice. Cells, 2022, 11, 975.	1.8	1
441	Cell Transport Defects. , 2009, , 317-323.		O
442	Re: "Goiter in Residents of Salta, Argentina: An Artistic Rendition―by Jonklaas <i>et al.</i> (Thyroid) Tj ETQo	10 <u>9.9</u> rgB	T /Overlock 10
443	Consecutive Mutational Events in a Thyroid Stimulating Hormone (TSH) Receptor Allele of Arab Families with Resistance to TSH. Thyroid, 0, , 111209122357003.	2.4	0
444	Adaptation of 24-Hour Hormonal Patterns and Sleep to Jet Lag., 1981,, 68-95.		O
445	FALSE ELEVATION OF FREE THYROXINE AND TRIIODOTHYRONINE DUE TO THE PRESENCE OF ANTIBODIES TO IODOTHYRONINES. İstanbul Tıp Fakültesi Dergisi, 2016, 79, 51.	0.1	O
446	OR28-01 Constitutive Activation of NRF2 Antioxidant Response Leads to Age-Dependent Goiter and Compensated Hypothyroidism in Male Mice. Journal of the Endocrine Society, 2020, 4, .	0.1	0
447	Intranasal delivery of Thyroid hormones in MCT8 deficiency. , 2020, 15, e0236113.		O
448	Intranasal delivery of Thyroid hormones in MCT8 deficiency., 2020, 15, e0236113.		0
449	Intranasal delivery of Thyroid hormones in MCT8 deficiency. , 2020, 15, e0236113.		0
450	Intranasal delivery of Thyroid hormones in MCT8 deficiency. , 2020, 15, e0236113.		0