Hossein Ghanadzadeh Gilani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7259222/publications.pdf

Version: 2024-02-01

304743 434195 67 1,278 22 31 citations h-index g-index papers 621 67 67 67 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	(Liquid+liquid) equilibria for (water+acetic acid+2-ethyl-1-hexanol): experimental data and prediction. Journal of Chemical Thermodynamics, 2004, 36, 1001-1006.	2.0	50
2	Tie-line data for the aqueous solutions of phenol with organic solvents at $T=298.2K$. Journal of Chemical Thermodynamics, 2013, 58, 142-148.	2.0	50
3	A thermodynamic study of solute–solvent interactions through dielectric properties of the mixtures consisting of 1,4-butanediol, 1-octanol, and 1,4-dioxane at different temperatures. Journal of Chemical Thermodynamics, 2012, 55, 203-212.	2.0	49
4	Mathematical model of liquid–liquid equilibrium for a ternary system using the GMDH-type neural network and genetic algorithm. Applied Mathematical Modelling, 2012, 36, 4096-4105.	4.2	47
5	Dielectric properties of binary mixtures of three butanediols with 1,4-dioxane and 2-ethyl-1-hexanol at T=298.2K. Journal of Chemical Thermodynamics, 2010, 42, 967-972.	2.0	41
6	CO ₂ , N ₂ , and H ₂ Adsorption by Hyper-Cross-Linked Polymers and Their Selectivity Evaluation by Gas–Solid Equilibrium. Journal of Chemical & Data, 2020, 65, 4905-4913.	1.9	41
7	Dielectric study of molecular association in the binary mixtures (2-ethyl-1-hexanol+alcohol) and (cyclohexane+alcohol) at 298.2 K. Journal of Chemical Thermodynamics, 2005, 37, 357-362.	2.0	37
8	(Liquid+liquid) equilibrium data of (water+phosphoric acid+solvents) systems at T=(308.2 and 318.2)K. Journal of Chemical Thermodynamics, 2012, 53, 52-59.	2.0	36
9	(Liquid+liquid) equilibria of (water+propionic acid+2-ethyl-1-hexanol): Experimental data and correlation. Journal of Chemical Thermodynamics, 2008, 40, 879-884.	2.0	35
10	Liquid–liquid equilibria study of the (water+phosphoric acid+hexyl or cyclohexyl acetate) systems at T=(298.15, 308.15, and 318.15)K: Measurement and thermodynamic modelling. Journal of Chemical Thermodynamics, 2016, 98, 200-207.	2.0	35
11	Liquid phase equilibria of (water+phosphoric acid+1-butanol or butyl acetate) ternary systems at T=308.2K. Journal of Chemical Thermodynamics, 2008, 40, 1666-1670.	2.0	33
12	Estimation of VLE of binary systems (tert-butanol+2-ethyl-1-hexanol) and (n-butanol+2-ethyl-1-hexanol) using GMDH-type neural network. Journal of Chemical Thermodynamics, 2010, 42, 1352-1355.	2.0	32
13	Liquid phase equilibria of the system (water+phosphoric acid+1-octanol) at T=(298.2, 308.2, and 318.2)K. Fluid Phase Equilibria, 2012, 316, 109-116.	2.5	32
14	Dielectric data of binary mixtures of 1,2-butanediol with 2-ethyl-1-hexanol and 1,4-dioxane at T=(298.2,) Tj ETQq0	0.0 rgBT / 2.0	/Qverlock 10
15	On the molecular structure and aggregative properties of Sudan dyes in the anisotropic host. Journal of Molecular Liquids, 2000, 88, 299-308.	4.9	30
16	Measurement and correlation of phase equilibrium data of the mixtures consisting of butyric acid, water, cyclohexanone at different temperatures. Journal of Chemical Thermodynamics, 2012, 47, 288-294.	2.0	30
17	Ternary liquid–liquid equilibrium data for the (water+butyric acid+n-hexane or n-hexanol) systems at T=(298.2, 308.2, and 318.2)K. Journal of Chemical Thermodynamics, 2013, 60, 63-70.	2.0	30
18	Experimental study of phase equilibria in aqueous mixtures of phosphoric acid with isoamyl acetate and methyl isoamyl ketone at T=(298.2, 308.2, and 318.2)K. Fluid Phase Equilibria, 2013, 337, 32-38.	2.5	28

#	Article	IF	CITATIONS
19	(Liquid+liquid) equilibria in ternary aqueous mixtures of phosphoric acid with organic solvents at T=298.2K. Journal of Chemical Thermodynamics, 2010, 42, 695-699.	2.0	27
20	Kinetic, isotherm, and thermodynamic investigations of uranium(VI) adsorption on synthesized ion-exchange chelating resin and prediction with an artificial neural network. Desalination and Water Treatment, 2015, 55, 1076-1087.	1.0	27
21	(Liquid+liquid) equilibria of aqueous solutions of butyric acid with n-heptane and toluene at T=(298.2,) Tj ETQq1	1 0.78431 2.0	4 rgBT /Ove
22	(Liquid+liquid) equilibria in (water+ethanol+2-ethyl-1-hexanol) at T=(298.2, 303.2, 308.2, and 313.2) K. Journal of Chemical Thermodynamics, 2003, 35, 1393-1401.	2.0	23
23	Adsorptive Removal of Thorium(IV) from Aqueous Solutions Using Synthesized Polyamidoxime Chelating Resin: Equilibrium, Kinetic, and Thermodynamic Studies. Journal of Dispersion Science and Technology, 2014, 35, 501-509.	2.4	22
24	Characterization of hypercrosslinked polymer adsorbent based on carbazole to achieve higher <scp>CO₂</scp> capture. Environmental Progress and Sustainable Energy, 2021, 40, e13586.	2.3	22
25	Liquid–liquid phase equilibria of the ternary system of water/TBA/2-ethyl-1-hexanol. Fluid Phase Equilibria, 2002, 202, 337-344.	2.5	20
26	Liquidâ^'Liquid Equilibria of Water + 1-Butanol + 2-Ethyl-1-hexanol System. Journal of Chemical & Engineering Data, 2004, 49, 783-786.	1.9	20
27	Estimation of Liquidâ^Liquid Equilibrium for a Quaternary System Using the GMDH Algorithm. Industrial & Engineering Chemistry Research, 2009, 48, 2129-2134.	3.7	20
28	Liquid–liquid equilibrium data for systems containing of formic acid, water, and primary normal alcohols at T=298.2K. Fluid Phase Equilibria, 2013, 354, 24-28.	2.5	20
29	Tie-line data for water–formic acid–1-decanol ternary system at T=298.2, 303.2, 313.2, and 323.2K. Thermochimica Acta, 2012, 547, 141-145.	2.7	18
30	Ternary equilibrium data of mixtures consisting of 2-butanol, water, and heavy alcohols at T=298.2K. Journal of Chemical Thermodynamics, 2012, 49, 39-45.	2.0	18
31	Phase diagrams for the aqueous solutions of butyric acid with cyclohexane at different temperatures: Experimental and correlated data. Thermochimica Acta, 2011, 523, 154-160.	2.7	17
32	Experimental determination and correlation of tie line data for the system (water+butyric) Tj ETQq0 0 0 rgBT /Ove	erlock 10 1 2.5	rf 50 222 Td
33	Extraction of Cu(II) ions from aqueous media using PEG/Sulphate salt aqueous two-phase system. Separation Science and Technology, 2016, 51, 601-608.	2.5	17
34	Efficiency increase in hypercrosslinked polymer based on polystyrene in CO2 adsorption process. Polymer Bulletin, 2022, 79, 3681-3702.	3.3	17
35	Experimental and Theoretical Study of the Phase Equilibria in Ternary Aqueous Mixtures of 1,4-Butanediol with Alcohols at 298.2 K. Journal of Chemical & Engineering Data, 2009, 54, 1009-1014.	1.9	16
36	Estimation of (vapour+liquid) equilibrium of binary systems (tert-butanol+2-ethyl-1-hexanol) and (n-butanol+2-ethyl-1-hexanol) using an artificial neural network. Journal of Chemical Thermodynamics, 2008, 40, 1152-1156.	2.0	15

#	Article	IF	Citations
37	Effect of poly-HEMA hydrophilic gel environment on the photo-physical behavior of rhodamine dyes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2005, 61, 659-663.	3.9	14
38	Liquid–liquid equilibrium data for water+ethanol+trans-decalin: Measurement and predication. Fluid Phase Equilibria, 2006, 243, 45-50.	2.5	14
39	Phase equilibria in ternary aqueous mixtures of 1,3-butanediol with 2-ethyl-1-hexanol at T=(298.2, 303.2) Tj ETQq1	1 0.7843 2.5	14 rgBT /O\ 14
40	(Liquid+liquid) equilibria for ternary mixtures of (water+propionic acid+organic solvent) at T=303.2K. Journal of Chemical Thermodynamics, 2010, 42, 267-273.	2.0	14
41	Dielectric analysis of binary systems of primary diols with 1-hexanol and 1,4-dioxane at various temperatures. Journal of Molecular Liquids, 2014, 196, 270-279.	4.9	14
42	Experimental and Correlational Study of Phase Equilibria in Aqueous Solutions of Formic and Butyric Acids with Isoamyl Acetate and Methyl Isoamyl Ketone at $\langle i \rangle T \langle j \rangle = 298.15$ K. Journal of Chemical & Engineering Data, 2014, 59, 917-925.	1.9	14
43	Volume and polarisability anisotropy of hexoxy and heptoxy cyanobiphenyl liquid crystals and the eutectic mixture of E607. Journal of Molecular Liquids, 2001, 94, 37-49.	4.9	13
44	Solubility and tie line data for the aqueous solutions of butyric acid with 1-octanol and 2-ethyl-1-hexanol at various temperatures. Fluid Phase Equilibria, 2014, 361, 45-53.	2.5	13
45	Experimental and correlational study of phase equilibria in aqueous mixtures of phosphoric acid with aromatic hydrocarbons at various temperatures. Journal of Chemical Thermodynamics, 2015, 91, 121-126.	2.0	13
46	Liquid-liquid equilibrium data in aqueous solutions of propionic and butyric acids with 1-heptanol at T=(298.15, 308.15, and 318.15) K. Korean Journal of Chemical Engineering, 2016, 33, 1408-1415.	2.7	13
47	Tie line data for the (water+butyric acid+n-butyl alcohol or amyl alcohol) at T=(298.2, 308.2, and) Tj ETQq1 1 0.78 2014, 71, 103-111.	4314 rgBT 2.0	
48	Measurement and prediction of tie-line data for mixtures of (water+1-propanol+diisopropyl ether): LLE diagrams as a function of temperature. Fluid Phase Equilibria, 2009, 277, 126-130.	2.5	11
49	Liquid Phase Equilibria of Aqueous Mixtures of Carboxylic Acids (C ₁ –C ₄) with Ethylbenzene: Thermodynamic and Mathematical Modeling. Journal of Chemical & Data, 2016, 61, 3391-3397.	1.9	11
50	LLE of ternary mixtures of water/acetone/2-ethyl-1-hexanol at different temperatures. Fluid Phase Equilibria, 2004, 219, 165-169.	2.5	10
51	Experimental and correlated tie-line data for aqueous mixtures of 2-butanol with 2-ethyl-1-hexanol at various temperatures. Fluid Phase Equilibria, 2011, 310, 192-197.	2.5	9
52	Binodal curves and tie line data of the water–propionic acid–iso-butyl acetate at T=(298.2, 308.2, 318.2,) Tj E	Г <u>О</u> дО О 0 г	gBT /Overlo
53	Experimental Data of Citric Acid Extraction from Aqueous Solution with 1-Decanol by Using Liquid–Liquid Equilibrium. Journal of Chemical & Engineering Data, 2018, 63, 3227-3236.	1.9	9
54	Phase equilibrium data for aqueous solutions of formic acid with 2-ethyl-1-hexanol at T=(298.2, 308.2,) Tj ETQq0 C	0.rgBT /C	vyerlock 101

#	Article	IF	CITATIONS
55	Investigation of Eosin B Removal from Aqueous Solution Employing Combined Graphene Oxide Adsorption and Zinc Oxide Coagulation Processes. Fibers and Polymers, 2019, 20, 1411-1417.	2.1	8
56	Experimental Data and Thermodynamic Modeling of Liquid–Liquid Equilibrium for Valeric Acid Extraction from Aqueous Solutions with Methyl Ethyl Ketone and Methyl Isobutyl Ketone at Several Temperatures. Journal of Chemical & Engineering Data, 2020, 65, 2422-2434.	1.9	5
57	(Liquid+liquid) phase behavior for systems containing (aromatic+TBA+methylcyclohexane). Journal of Chemical Thermodynamics, 2004, 36, 161-165.	2.0	4
58	Isobaric vapor–liquid phase equilibria for the binary systems of tert-butanol+2-ethyl-1-hexanol and n-butanol+2-ethyl-1-hexanol. Fluid Phase Equilibria, 2005, 233, 123-128.	2.5	4
59	Tie-line data for aqueous mixtures of butyric acid with isobutyl acetate at various temperatures. Korean Journal of Chemical Engineering, 2012, 29, 1615-1621.	2.7	3
60	Experimental Data and Thermodynamic Modeling of the Liquid–Liquid Equilibrium Ternary System (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperatures. Journal of Chemical & Description (Water + Acetic Acid + 1-Octanol) at Several Temperature (Water + Acetic Acid + 1-Octanol) at Several Temperature (Water + Acetic Acid + 1-Octanol) at Several Temperature (Water + Acetic Acid + 1-Octanol) at Several Temperature (Water + Acetic Acid + 1-Octanol) at Several Temperature (Water + Acetic Acid + 1-Octanol) at Several Temperature (Water + Acetic Acid + 1-Octanol) at Several Temperature (Water + Acetic Acid + 1-Octanol) at Several Temperature (Water + Acetic Acid + 1-Octanol) at Several Temperature (Water + Acetic Acid + 1-Octanol) at Several Temperature (Water + Acetic Acid + 1-Octanol) at Several Temperature (Water + Acetic Acid	1.9	3
61	Liquid–Liquid Equilibrium Calculation for Ternary Aqueous Mixtures of Ethanol and Acetic Acid with 2-Ethyl-1-hexanol Using the GMDH-Type Neural Network. Industrial & Engineering Chemistry Research, 2011, 50, 10158-10167.	3.7	2
62	Comments concerning "(liquid+liquid) phase behavior for systems containing (aromatic+TBA+methylcyclohexane)― Journal of Chemical Thermodynamics, 2005, 37, 389-391.	2.0	1
63	Extraction of formic acid from aqueous solution using polyethylene glycol /phosphate salt aqueous two-phase system. Indian Chemical Engineer, 2020, , 1-12.	1.5	1
64	Ternary Liquid–Liquid Equilibrium for Phosphoric Acid Extraction from Aqueous Solutions with 1-Pentanol or Methyl Butyl Ketone at T = (298.2, 308.2, and 318.2) K. Journal of Chemical & Engineering Data, 2021, 66, 2401-2411.	1.9	1
65	Kinetic, isotherm, thermodynamic, and adsorption capacity studies of magnetic Spirulina microalgae onto zinc (<scp> < scp> < scp> & scp> </scp>	2.3	1
66	Dielectric study and molecular interaction of halogenated compounds in non-polar solvent at different temperatures. , 2008, , .		0
67	Preparation, characterization and analytical application of stannic molybdophosphate immobilized on multiwalled carbon nanotubes as a new adsorbent for the removal of strontium from wastewater. Journal of Radioanalytical and Nuclear Chemistry, 2014, 303, 2445.	1.5	0