
Jae-Sung Rieh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7258812/publications.pdf Version: 2024-02-01

INF-SUNC RIFH

#	Article	IF	CITATIONS
1	A CMOS 300-GHz Injection-Locked Frequency Tripler With a Tri-Layer Dual Coupled Line for Improved Locking Range. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 309-313.	3.0	3
2	A Scalable 300-GHz Multichip Stitched CMOS Detector Array. IEEE Transactions on Microwave Theory and Techniques, 2022, 70, 1797-1809.	4.6	9
3	Introduction to Terahertz Electronics. , 2021, , .		24
4	Terahertz Signal Source and Receiver Operating Near 600 GHz and Their 3-D Imaging Application. IEEE Transactions on Microwave Theory and Techniques, 2021, 69, 2762-2775.	4.6	20
5	A Wideband CMOS On-Chip Terahertz Frequency Detector With Slow Wave Structure. IEEE Microwave and Wireless Components Letters, 2021, 31, 600-603.	3.2	1
6	Terahertz Signal Sources Based on Semiconductor Electronic Devices. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2021, 32, 505-516.	0.3	1
7	A 253–280 GHz Wide Tuning Range VCO with -3.5 dBm Peak Output Power in 40-nm CMOS. , 2021, , .		5
8	THz Sources and Related Topics. , 2021, , 19-93.		0
9	THz Detectors and Related Topics. , 2021, , 95-161.		1
10	THz Propagation and Related Topics. , 2021, , 163-237.		0
11	THz Applications. , 2021, , 273-350.		5
12	A 300-GHz CMOS 7-by-7 Detector Array for Optics-less THz Imaging with Scan-less Target Object. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 202-214.	2.2	8
13	A 90-GHz High DC-to-RF Efficiency VCO with Multi-Way Transformers in 65-nm CMOS. , 2020, , .		Ο
14	InP HBT Oscillators Operating up to 682 GHz with Coupled-Line Load for Improved Efficiency and Output Power. , 2020, , .		3
15	300-GHz InP HBT Quadrature VCO With Integrated Mixer. IEEE Transactions on Terahertz Science and Technology, 2020, 10, 419-422.	3.1	5
16	A 24-48 GHz Wideband Frequency Tripler in SiGe BiCMOS Technology. , 2020, , .		3
17	A 270-GHz CMOS Triple-Push Ring Oscillator With a Coupled-Line Matching Network. IEEE Transactions on Terahertz Science and Technology, 2019, 9, 449-462.	3.1	12
18	WR-3 Band Integrated Circuits in InP HBT Technology. , 2019, , .		0

Jae-Sung Rieh

#	Article	IF	CITATIONS
19	290-GHz 17-dB ON-/OFF-Ratio Modulator With Resonance Control Varactors. IEEE Microwave and Wireless Components Letters, 2019, 29, 50-52.	3.2	1
20	A 300-GHz SPST Switch With a New Coupled-Line Topology in 65-nm CMOS Technology. IEEE Transactions on Terahertz Science and Technology, 2019, 9, 215-218.	3.1	7
21	A 300-GHz Integrated Transmitter Based on InP HBT Technology. , 2018, , .		5
22	Terahertz InP HBT Oscillators. , 2018, , .		5
23	A 283-GHz Fully Integrated Phase-Locked Loop Based on 65-nm CMOS. IEEE Transactions on Terahertz Science and Technology, 2018, 8, 784-792.	3.1	5
24	Three-Dimensional Terahertz Tomography With Transistor-Based Signal Source and Detector Circuits Operating Near 300 GHz. IEEE Transactions on Terahertz Science and Technology, 2018, 8, 482-491.	3.1	17
25	Characterization of a CMOS 135-GHz Low Noise Amplifier with Two Different Noise Measurement Methods. Journal of Semiconductor Technology and Science, 2018, 18, 536-540.	0.4	2
26	A \$D\$ -Band CMOS Amplifier With a New Dual-Frequency Interstage Matching Technique. IEEE Transactions on Microwave Theory and Techniques, 2017, 65, 1580-1588.	4.6	27
27	A 280-GHz 10-dBm Signal Source Based on InP HBT Technology. IEEE Microwave and Wireless Components Letters, 2017, 27, 159-161.	3.2	16
28	260â€GHz differential amplifier in SiGe heterojunction bipolar transistor technology. Electronics Letters, 2017, 53, 194-196.	1.0	17
29	Terahertz Reflection-Mode Biological Imaging Based on InP HBT Source and Detector. IEEE Transactions on Terahertz Science and Technology, 2017, 7, 274-283.	3.1	27
30	300-GHz Direct and Heterodyne Active Imagers Based on 0.13-μm SiGe HBT Technology. IEEE Transactions on Terahertz Science and Technology, 2017, 7, 536-545.	3.1	34
31	A CMOS 300-GHz 7 by 7 detector array for THz imaging. , 2017, , .		3
32	645â€CHz InP heterojunction bipolar transistor harmonic oscillator. Electronics Letters, 2017, 53, 1475-1477.	1.0	10
33	Two 122-GHz Phase-Locked Loops in 65-nm CMOS Technology. IEEE Transactions on Microwave Theory and Techniques, 2016, , 1-8.	4.6	8
34	A 130-GHz OOK transmitter in 65-nm CMOS technology. , 2016, , .		0
35	Approaches to enhance the performance of SiGe imagers operating near 130 GHz and 300 GHz. , 2016, , .		1
36	A CMOS 180-GHz Signal Source with an Integrated Frequency Doubler. Journal of the Korean Institute of Electromagnetic Engineering and Science, 2016, 16, 229-231.	3.0	3

JAE-SUNG RIEH

#	Article	IF	CITATIONS
37	Compact MMâ€wave CMOS distributed amplifier using seriesâ€peaking line and Mâ€derived section. Microwave and Optical Technology Letters, 2015, 57, 814-817.	1.4	1
38	3-D THz tomography with an InP HBT signal source and a SiGe HBT imaging receiver operating near 300 GHz. , 2015, , .		6
39	A CMOS triple-push 280-GHz VCO integrated with 1/16,384 divider chain. , 2015, , .		2
40	Two 320 GHz Signal Sources Based on SiGe HBT Technology. IEEE Microwave and Wireless Components Letters, 2015, 25, 178-180.	3.2	22
41	A D-band Active Imager in a SiGe HBT Technology. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36, 335-349.	2.2	7
42	D-Band Heterodyne Integrated Imager in a 65-nm CMOS Technology. IEEE Microwave and Wireless Components Letters, 2015, 25, 196-198.	3.2	13
43	A 310–340-GHz Coupled-Line Voltage-Controlled Oscillator Based on 0.25-\$mu\$m InP HBT Technology. IEEE Transactions on Terahertz Science and Technology, 2015, 5, 652-654.	3.1	21
44	D2ART: Direct Data Accessing from Passive RFID Tag for infra-less, contact-less, and battery-less pervasive computing. Microprocessors and Microsystems, 2015, 39, 767-781.	2.8	2
45	An overview of solid-state electronic sources and detectors for Terahertz imaging. , 2014, , .		9
46	A 200 GHz Heterodyne Image Receiver With an Integrated VCO in a SiGe BiCMOS Technology. IEEE Microwave and Wireless Components Letters, 2014, 24, 557-559.	3.2	5
47	300-GHz InP HBT Oscillators Based on Common-Base Cross-Coupled Topology. IEEE Transactions on Microwave Theory and Techniques, 2014, 62, 3053-3064.	4.6	51
48	300 GHz Integrated Heterodyne Receiver and Transmitter With On-Chip Fundamental Local Oscillator and Mixers. IEEE Transactions on Terahertz Science and Technology, 2014, , 1-10.	3.1	43
49	A 248–262 GHz InP HBT VCO with Interesting Tuning Behavior. IEEE Microwave and Wireless Components Letters, 2014, 24, 560-562.	3.2	20
50	Balanced RF Duplexer with Low Interference Using Hybrid BAW Resonators for LTE Application. ETRI Journal, 2014, 36, 317-320.	2.0	3
51	Bulk acoustic wave resonator with suppressed energy loss using improved lateral structure. IEICE Electronics Express, 2014, 11, 20130938-20130938.	0.8	1
52	Hybrid Bulk Acoustic Wave Structure for Temperature Stability in LTE Applications. IEEE Microwave and Wireless Components Letters, 2013, 23, 453-455.	3.2	4
53	Effect of Device Layout on the Stability of RF MOSFETs. IEEE Transactions on Microwave Theory and Techniques, 2013, 61, 1861-1869.	4.6	5
54	Phase noise calculation and variability analysis of RFCMOS LC oscillator based on physics-based mixed-mode simulation. Solid-State Electronics, 2013, 79, 152-158.	1.4	0

JAE-SUNG RIEH

#	Article	IF	CITATIONS
55	A wide band 215–255 GHz CB differential amplifier in a 0.25-μm SiGe HBT technology. , 2013, , .		1
56	Characterisation and analysis of harmonic emissions in nonlinear bulk acoustic wave resonators. Electronics Letters, 2013, 49, 1311-1312.	1.0	0
57	SiGe 135â€GHz amplifier with inductive positive feedback operating near <i>f</i> _{max} . Electronics Letters, 2013, 49, 1229-1230.	1.0	4
58	SiGe 140â€GHz ring-oscillator-based injection-locked frequency divider. Electronics Letters, 2012, 48, 847.	1.0	5
59	An overview of challenges and current status of Si-based terahertz monolithic integrated circuits. , 2012, , .		0
60	A 140 GHz single-ended injection locked frequency divider with inductive feedback in SiGe HBT technology. , 2012, , .		6
61	A 135 GHz Differential Active Star Mixer in SiGe BiCMOS Technology. IEEE Microwave and Wireless Components Letters, 2012, 22, 409-411.	3.2	10
62	Si-based D-band frequency conversion circuits. , 2012, , .		1
63	Recent progress in terahertz monolithic integrated circuits. , 2012, , .		3
64	CMOS 138â€GHz low-power active mixer with branch-line coupler. Electronics Letters, 2012, 48, 554.	1.0	6
65	A \$Q\$-Band Injection-Locked Frequency Divider With Inductive Feedback for a Locking Range Enhancement. IEEE Microwave and Wireless Components Letters, 2011, 21, 317-319.	3.2	6
66	An overview of integrated THz electronics for communication applications. , 2011, , .		6
67	A 60 GHz Wideband Quadrature-Balanced Mixer Based on 0.13 \$mu{m m}\$ RFCMOS Technology. IEEE Microwave and Wireless Components Letters, 2011, 21, 215-217.	3.2	8
68	SiRF 2012. IEEE Microwave Magazine, 2011, 12, S15-S15.	0.8	0
69	A Comprehensive Study of High-\$Q\$ Island-Gate Varactors (IGVs) for CMOS Millimeter-Wave Applications. IEEE Transactions on Microwave Theory and Techniques, 2011, 59, 1520-1528.	4.6	8
70	Trench-type deep N-well dual guard ring for the suppression of substrate noise coupling. International Journal of RF and Microwave Computer-Aided Engineering, 2011, 21, 36-44.	1.2	2
71	A 20–30 GHz divideâ€byâ€3 ringâ€oscillatorâ€based injection locked frequency divider with a wide locking range. Microwave and Optical Technology Letters, 2011, 53, 839-841.	1.4	7
72	A 54-GHz Injection-Locked Frequency Divider Based on 0.13-㎛ RFCMOS Technology. The Journal of Korean Institute of Electromagnetic Engineering and Science, 2011, 22, 522-527.	0.3	0

JAE-SUNG RIEH

#	Article	IF	CITATIONS
73	A Low Power V-Band Injection-Locked Frequency Divider in 0.13MU.m Si RFCMOS Technology. IEICE Transactions on Electronics, 2010, E93-C, 614-618.	0.6	0
74	A 47 GHz \$LC\$ Cross-Coupled VCO Employing High-\$Q\$ Island-Gate Varactor for Phase Noise Reduction. IEEE Microwave and Wireless Components Letters, 2010, 20, 94-96.	3.2	10
75	Noise Figure Formulas of RF MOSFETs in the Presence of Digital Substrate Noise. IEEE Microwave and Wireless Components Letters, 2010, 20, 622-624.	3.2	2
76	Variation in RF Performance of MOSFETs Due to Substrate Digital Noise Coupling. IEEE Microwave and Wireless Components Letters, 2010, 20, 384-386.	3.2	3
77	A single-balanced 60-GHz down-conversion mixer in 0.13 μm CMOS technology for WPAN applications. , 2009, , .		0
78	On the Performance Limits of Cryogenically Operated SiGe HBTs and Its Relation to Scaling for Terahertz Speeds. IEEE Transactions on Electron Devices, 2009, 56, 1007-1019.	3.0	45
79	The Island-Gate Varactor—A High-Q MOS Varactor for Millimeter-Wave Applications. IEEE Microwave and Wireless Components Letters, 2009, 19, 215-217.	3.2	11
80	An Overview of Semiconductor Technologies and Circuits for Terahertz Communication Applications. , 2009, , .		8
81	Impact of Substrate Digital Noise Coupling on the High-Frequency Noise Performance of RF MOSFETs. IEEE Microwave and Wireless Components Letters, 2009, 19, 557-559.	3.2	3
82	Integrated planar spiral inductors with CoFe and NiFe ferromagnetic layer. Microwave and Optical Technology Letters, 2008, 50, 676-678.	1.4	16
83	A Magnetostatic Model for Square Spiral Inductors Incorporating a Magnetic Layer. IEEE Transactions on Magnetics, 2008, 44, 2085-2087.	2.1	1
84	Effect of Printed Circuit Board Structures on Temperature-Dependent Gain Characteristics of RF Power Amplifier Chips. IEEE Microwave and Wireless Components Letters, 2008, 18, 323-325.	3.2	1
85	Suppression of Digital Noise Coupling on LNA in 0.13-μm RFCMOS Technology by Global Guard Rings. , 2008, , .		1
86	Technology and design considerations for millimeter-wave circuits. , 2008, , .		5
87	Suppression of Digital Noise Coupling on LNA in 0.13-μm RFCMOS Technology by Global Guard Rings. , 2008, , .		0
88	PRESENT STATUS AND FUTURE DIRECTIONS OF SiGe HBT TECHNOLOGY. International Journal of High Speed Electronics and Systems, 2007, 17, 61-80.	0.7	1
89	Manufacturable Parasitic-Aware Circuit-Level FETs in 65-nm SOI CMOS Technology. IEEE Electron Device Letters, 2007, 28, 520-522.	3.9	2
90	A V-Band Waveguide Transition Design Appropriate for Monolithic Integration. , 2007, , .		10

Jae-Sung Rieh

#	Article	IF	CITATIONS
91	Analysis and understanding of unique cryogenic phenomena in state-of-the-art SiGe HBTs. Solid-State Electronics, 2006, 50, 964-972.	1.4	12
92	Half-terahertz operation of SiGe HBTs. IEEE Electron Device Letters, 2006, 27, 567-569.	3.9	89
93	A brief overview of modern high-speed SiGe HBTs. , 2006, , .		1
94	Evaluating and designing the optimal 2D collector profile for a 300GHz SiGe HBT. Materials Science in Semiconductor Processing, 2005, 8, 295-299.	4.0	5
95	Reverse Active Mode Current Characteristics of SiGe HBTs. IEEE Transactions on Electron Devices, 2005, 52, 1219-1222.	3.0	15
96	Structure Optimization of Trench-Isolated SiGe HBTs for Simultaneous Improvements in Thermal and Electrical Performances. IEEE Transactions on Electron Devices, 2005, 52, 2744-2752.	3.0	59
97	SiGe Heterojunction Bipolar Transistors and Circuits Toward Terahertz Communication Applications. IEEE Transactions on Microwave Theory and Techniques, 2004, 52, 2390-2408.	4.6	77
98	Reliability and performance scaling of very high speed SiGe HBTs. Microelectronics Reliability, 2004, 44, 397-410.	1.7	14
99	A doping concentration-dependent upper limit of the breakdown voltage–cutoff frequency product in Si bipolar transistors. Solid-State Electronics, 2004, 48, 339-343.	1.4	27
100	On the scaling limits of low-frequency noise in SiGe HBTs. Solid-State Electronics, 2004, 48, 1897-1900.	1.4	2
101	Design and optimization of a 200 GHz SiGe HBT collector profile by TCAD. Applied Surface Science, 2004, 224, 324-329.	6.1	3
102	Proton tolerance of fourth-generation 350 GHz UHV/CVD SiGe HBTs. IEEE Transactions on Nuclear Science, 2004, 51, 3736-3742.	2.0	41
103	Transistor design and application considerations for < 200-GHz SiGe HBTs. IEEE Transactions on Electron Devices, 2003, 50, 645-655.	3.0	56
104	Product applications and technology directions with SiGe BiCMOS. IEEE Journal of Solid-State Circuits, 2003, 38, 1471-1478.	5.4	38
105	Reliability of high-speed SiGe heterojunction bipolar transistors under very high forward current density. IEEE Transactions on Device and Materials Reliability, 2003, 3, 31-38.	2.0	37
106	3.9 ps SiGe HBT ECL ring oscillator and transistor design for minimum gate delay. IEEE Electron Device Letters, 2003, 24, 324-326.	3.9	38
107	50–200 GHz Silicon–Germanium Heterojunction Bipolar Transistor BICMOS Technology and a Computer-Aided Design Environment for 2–50+ GHz Very Large-Scale Integration Mixed-Signal ICs. Japanese Journal of Applied Physics, 2002, 41, 1111-1123.	1.5	2
108	Reliability of microwave SiGe/Si heterojunction bipolar transistors. IEEE Microwave and Wireless Components Letters, 2001, 11, 401-403.	3.2	2

#	Article	IF	CITATIONS
109	X- and Ku-band amplifiers based on Si/SiGe HBT's and micromachined lumped components. IEEE Transactions on Microwave Theory and Techniques, 1998, 46, 685-694.	4.6	48