List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7258518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stabilization of a Supersaturated Solution of Mefenamic Acid from a Solid Dispersion with EUDRAGIT® EPO. Pharmaceutical Research, 2012, 29, 2777-2791.	1.7	124
2	The effect of HPMCAS functional groups on drug crystallization from the supersaturated state and dissolution improvement. International Journal of Pharmaceutics, 2014, 464, 205-213.	2.6	98
3	Inhibitory Effect of Hydroxypropyl Methylcellulose Acetate Succinate on Drug Recrystallization from a Supersaturated Solution Assessed Using Nuclear Magnetic Resonance Measurements. Molecular Pharmaceutics, 2013, 10, 3801-3811.	2.3	89
4	Recent progress of structural study of polymorphic pharmaceutical drugs. Advanced Drug Delivery Reviews, 2017, 117, 71-85.	6.6	69
5	Effects of the PEG molecular weight of a PEG-lipid and cholesterol on PEG chain flexibility on liposome surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 474, 63-70.	2.3	64
6	Formation mechanism of colloidal nanoparticles obtained from probucol/PVP/SDS ternary ground mixture. International Journal of Pharmaceutics, 2008, 352, 309-316.	2.6	60
7	A Novel Drug-Drug Cocrystal of Levofloxacin and Metacetamol: Reduced Hygroscopicity and Improved Photostability of Levofloxacin. Journal of Pharmaceutical Sciences, 2019, 108, 2383-2390.	1.6	60
8	Mechanistic Differences in Permeation Behavior of Supersaturated and Solubilized Solutions of Carbamazepine Revealed by Nuclear Magnetic Resonance Measurements. Molecular Pharmaceutics, 2012, 9, 3023-3033.	2.3	58
9	Physicochemical Characterization and Structural Evaluation of a Specific 2:1 Cocrystal of Naproxen–Nicotinamide. Journal of Pharmaceutical Sciences, 2012, 101, 3214-3221.	1.6	55
10	The effect of drug and EUDRAGIT® S 100 miscibility in solid dispersions on the drug and polymer dissolution rate. International Journal of Pharmaceutics, 2015, 494, 9-16.	2.6	53
11	Molecular Interaction among Probucol/PVP/SDS Multicomponent System Investigated by Solid-State NMR. Pharmaceutical Research, 2006, 23, 2566-2574.	1.7	50
12	Insights into Atomic-Level Interaction between Mefenamic Acid and Eudragit EPO in a Supersaturated Solution by High-Resolution Magic-Angle Spinning NMR Spectroscopy. Molecular Pharmaceutics, 2014, 11, 351-357.	2.3	48
13	Incorporation of Salicylic Acid Molecules into the Intermolecular Spaces of Î ³ -Cyclodextrin-Polypseudorotaxane. Crystal Growth and Design, 2009, 9, 4243-4246.	1.4	44
14	In Vivo Assessment of Oral Administration of Probucol Nanoparticles in Rats. Biological and Pharmaceutical Bulletin, 2008, 31, 321-325.	0.6	42
15	Synergetic Role of Hypromellose and Methacrylic Acid Copolymer in the Dissolution Improvement of Amorphous Solid Dispersions. Journal of Pharmaceutical Sciences, 2017, 106, 1042-1050.	1.6	41
16	Salicylic Acid/γ-Cydodextrin 2:1 and 4:1 Complex Formation by Sealed-Heating Method. Journal of Pharmaceutical Sciences, 2010, 99, 4192-4200.	1.6	39
17	Direct Evaluation of Molecular States of Piroxicam/Poloxamer Nanosuspension by Suspended-State NMR and Raman Spectroscopies. Molecular Pharmaceutics, 2015, 12, 1564-1572.	2.3	37
18	Direct NMR Monitoring of Phase Separation Behavior of Highly Supersaturated Nifedipine Solution Stabilized with Hypromellose Derivatives. Molecular Pharmaceutics, 2017, 14, 2314-2322.	2.3	36

#	Article	IF	CITATIONS
19	Micronization of Phenylbutazone by Rapid Expansion of Supercritical CO ₂ Solution. Chemical and Pharmaceutical Bulletin, 2005, 53, 1025-1028.	0.6	35
20	Drug Nanoparticle Formulation Using Ascorbic Acid Derivatives. Journal of Drug Delivery, 2011, 2011, 1-9.	2.5	35
21	Nano-scale and molecular-level understanding of wet-milled indomethacin/poloxamer 407 nanosuspension with TEM, suspended-state NMR, and Raman measurements. International Journal of Pharmaceutics, 2018, 537, 30-39.	2.6	35
22	Application of ascorbic acid 2-glucoside as a solubilizing agent for clarithromycin: Solubilization and nanoparticle formation. International Journal of Pharmaceutics, 2007, 331, 38-45.	2.6	33
23	Inhibition mechanism of hydroxypropyl methylcellulose acetate succinate on drug crystallization in gastrointestinal fluid and drug permeability from a supersaturated solution. European Journal of Pharmaceutical Sciences, 2014, 62, 293-300.	1.9	33
24	An Insight into Different Stabilization Mechanisms of Phenytoin Derivatives Supersaturation by HPMC and PVP. Journal of Pharmaceutical Sciences, 2015, 104, 2574-2582.	1.6	33
25	Molecular Mobility Suppression of Ibuprofen-Rich Amorphous Nanodroplets by HPMC Revealed by NMR Relaxometry and Its Significance with Respect to Crystallization Inhibition. Molecular Pharmaceutics, 2019, 16, 4968-4977.	2.3	33
26	Cryo-TEM and AFM Observation of the Time-Dependent Evolution of Amorphous Probucol Nanoparticles Formed by the Aqueous Dispersion of Ternary Solid Dispersions. Molecular Pharmaceutics, 2019, 16, 2184-2198.	2.3	32
27	Transglycosylated rutin-specific non-surface-active nanostructure affects absorption enhancement of flurbiprofen. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 82, 120-126.	2.0	31
28	Effect of Drug–Polymer Interactions through Hypromellose Acetate Succinate Substituents on the Physical Stability on Solid Dispersions Studied by Fourier-Transform Infrared and Solid-State Nuclear Magnetic Resonance. Molecular Pharmaceutics, 2019, 16, 2785-2794.	2.3	31
29	Drug solubilization mechanism of α-glucosyl stevia by NMR spectroscopy. International Journal of Pharmaceutics, 2014, 465, 255-261.	2.6	30
30	Mechanistic insight into the dramatic improvement of probucol dissolution in neutral solutions by solid dispersion in Eudragit E PO with saccharin. Journal of Pharmacy and Pharmacology, 2016, 68, 655-664.	1.2	29
31	Molecular-level characterization of probucol nanocrystal in water by in situ solid-state NMR spectroscopy. International Journal of Pharmaceutics, 2012, 423, 571-576.	2.6	28
32	Mechanism of Enhanced Nifedipine Dissolution by Polymer-Blended Solid Dispersion through Molecular-Level Characterization. Molecular Pharmaceutics, 2018, 15, 4099-4109.	2.3	28
33	Ascorbyl dipalmitate/PEG-lipid nanoparticles as a novel carrier for hydrophobic drugs. International Journal of Pharmaceutics, 2010, 387, 236-243.	2.6	27
34	NMR investigation of a novel excipient, αâ€glucosylhesperidin, as a suitable solubilizing agent for poorly waterâ€soluble drugs. Journal of Pharmaceutical Sciences, 2011, 100, 4421-4431.	1.6	27
35	Equilibrium State at Supersaturated Drug Concentration Achieved by Hydroxypropyl Methylcellulose Acetate Succinate: Molecular Characterization Using ¹ H NMR Technique. Molecular Pharmaceutics, 2015, 12, 1096-1104.	2.3	27
36	Mechanistic elucidation of formation of drug-rich amorphous nanodroplets by dissolution of the solid dispersion formulation. International Journal of Pharmaceutics, 2019, 561, 82-92.	2.6	27

#	Article	IF	CITATIONS
37	Application of Intermolecular Spaces between Polyethylene Glycol/l³-Cyclodextrin-Polypseudorotaxanes as a Host for Various Guest Drugs. Crystal Growth and Design, 2014, 14, 2773-2781.	1.4	26
38	Molecular-Level Understanding of the Encapsulation and Dissolution of Poorly Water-Soluble Ibuprofen by Functionalized Organic Nanotubes Using Solid-State NMR Spectroscopy. Journal of Physical Chemistry B, 2016, 120, 4496-4507.	1.2	26
39	Encapsulation of poorly water-soluble drugs into organic nanotubes for improving drug dissolution. International Journal of Pharmaceutics, 2014, 469, 190-196.	2.6	24
40	Molecular states of prednisolone dispersed in folded sheet mesoporous silica (FSM-16). International Journal of Pharmaceutics, 2009, 378, 17-22.	2.6	21
41	In situ molecular elucidation of drug supersaturation achieved by nano-sizing and amorphization of poorly water-soluble drug. European Journal of Pharmaceutical Sciences, 2015, 77, 79-89.	1.9	20
42	Structural Evaluation of Crystalline Ternary γ-Cyclodextrin Complex. Journal of Pharmaceutical Sciences, 2011, 100, 325-333.	1.6	19
43	Crystallization of Probucol in Nanoparticles Revealed by AFM Analysis in Aqueous Solution. Molecular Pharmaceutics, 2015, 12, 2972-2980.	2.3	19
44	Nano-Sized Crystalline Drug Production by Milling Technology. Current Pharmaceutical Design, 2013, 19, 6246-6258.	0.9	18
45	Correlation between drug dissolution and resistance to water-induced phase separation in solid dispersion formulations revealed by solid-state NMR spectroscopy. International Journal of Pharmaceutics, 2020, 577, 119086.	2.6	17
46	Analysis of Molecular Interactions in Solid Dosage Forms; Challenge to Molecular Pharmaceutics. Chemical and Pharmaceutical Bulletin, 2011, 59, 147-154.	0.6	16
47	Determination of Nonspherical Morphology of Doxorubicin-Loaded Liposomes by Atomic Force Microscopy. Journal of Pharmaceutical Sciences, 2018, 107, 717-726.	1.6	16
48	Effect of molecular weight of hypromellose on mucin diffusion and oral absorption behavior of fenofibrate nanocrystal. International Journal of Pharmaceutics, 2019, 564, 39-47.	2.6	16
49	Structural Determination of a Novel Polymorph of Sulfathiazole–Oxalic Acid Complex in Powder Form by Solid-State NMR Spectroscopy on the Basis of Crystallographic Structure of Another Polymorph. Crystal Growth and Design, 2014, 14, 4510-4518.	1.4	15
50	Effect of drug-coformer interactions on drug dissolution from a coamorphous in mesoporous silica. International Journal of Pharmaceutics, 2021, 600, 120492.	2.6	15
51	Application of Solid-State NMR Relaxometry for Characterization and Formulation Optimization of Grinding-Induced Drug Nanoparticle. Molecular Pharmaceutics, 2016, 13, 852-862.	2.3	13
52	Effect of guest drug character encapsulated in the cavity and intermolecular spaces of Î ³ -cyclodextrins on the dissolution property of ternary Î ³ -cyclodextrin complex. International Journal of Pharmaceutics, 2017, 531, 543-549.	2.6	13
53	Morphological and Physicochemical Evaluation of Two Distinct Glibenclamide/Hypromellose Amorphous Nanoparticles Prepared by the Antisolvent Method. Molecular Pharmaceutics, 2018, 15, 1587-1597.	2.3	13
54	Molecular-level elucidation of saccharin-assisted rapid dissolution and high supersaturation level of drug from Eudragit® E solid dispersion. International Journal of Pharmaceutics, 2018, 538, 57-64.	2.6	13

#	Article	IF	CITATIONS
55	Effects of wet-granulation process parameters on the dissolution and physical stability of a solid dispersion. International Journal of Pharmaceutics, 2017, 524, 304-311.	2.6	12
56	A novel capsule-like structure of micro-sized particles formed by phytosterol ester and γ-cyclodextrin in water. Food Chemistry, 2016, 210, 269-275.	4.2	11
57	Intermolecular Interactions between Drugs and Aminoalkyl Methacrylate Copolymer in Solution to Enhance the Concentration of Poorly Water-Soluble Drugs. Chemical and Pharmaceutical Bulletin, 2019, 67, 906-914.	0.6	11
58	Mechanism of Nanoparticle Formation from Ternary Coground Phenytoin and Its Derivatives. Journal of Pharmaceutical Sciences, 2012, 101, 3413-3424.	1.6	10
59	Nanocrystal formulation of poorly water-soluble drug. Drug Delivery System, 2015, 30, 92-99.	0.0	10
60	Solid-Phase Mediated Methodology To Incorporate Drug into Intermolecular Spaces of Cyclodextrin Columns in Polyethylene Glycol/Cyclodextrin-Polypseudorotaxanes by Cogrinding and Subsequent Heating. Crystal Growth and Design, 2017, 17, 1055-1068.	1.4	10
61	Structural elucidation of a novel transglycosylated compound α-glucosyl rhoifolin and of α-glucosyl rutin by NMR spectroscopy. Carbohydrate Research, 2017, 443-444, 37-41.	1.1	10
62	Stabilization mechanism of amorphous carbamazepine by transglycosylated rutin, a non-polymeric amorphous additive with a high glass transition temperature. International Journal of Pharmaceutics, 2021, 600, 120491.	2.6	10
63	Amorphous Drug Solubility and Maximum Free Drug Concentrations in Cyclodextrin Solutions: A Quantitative Study Using NMR Diffusometry. Molecular Pharmaceutics, 2021, 18, 2764-2776.	2.3	10
64	Composition-dependent structural changes and antitumor activity of ASC-DP/DSPE-PEG nanoparticles. European Journal of Pharmaceutical Sciences, 2017, 99, 24-31.	1.9	9
65	Combination of Roll Grinding and High-Pressure Homogenization Can Prepare Stable Bicelles for Drug Delivery. Nanomaterials, 2018, 8, 998.	1.9	9
66	Application of solid-state 13C relaxation time to prediction of the recrystallization inhibition strength of polymers on amorphous felodipine at low polymer loading. International Journal of Pharmaceutics, 2020, 581, 119300.	2.6	9
67	Unveiling the Interaction Potential Surface between Drug-Entrapped Polymeric Micelles Clarifying the High Drug Nanocarrier Efficiency. Nano Letters, 2021, 21, 1303-1310.	4.5	9
68	NMR-Based Mechanistic Study of Crystal Nucleation Inhibition in a Supersaturated Drug Solution by Polyvinylpyrrolidone. Crystal Growth and Design, 2022, 22, 3235-3244.	1.4	8
69	Clarification of the Dissolution Mechanism of an Indomethacin/Saccharin/Polyvinylpyrrolidone Ternary Solid Dispersion by NMR Spectroscopy. Journal of Pharmaceutical Sciences, 2020, 109, 3617-3624.	1.6	6
70	Formation mechanism of amorphous drug nanoparticles using the antisolvent precipitation method elucidated by varying the preparation temperature. International Journal of Pharmaceutics, 2021, 610, 121210.	2.6	6
71	Guest molecular size-dependent inclusion complexation of parabens with cholic acid by cogrinding. International Journal of Pharmaceutics, 2011, 420, 191-197.	2.6	5
72	Multistep Crystallization of Pharmaceutical Amorphous Nanoparticles via a Cognate Pathway of Oriented Attachment: Direct Evidence of Nonclassical Crystallization for Organic Molecules. Nano Letters, 2022, 22, 6841-6846.	4.5	5

#	Article	IF	CITATIONS
73	Characterization of Cromolyn Sodium Hydrates and Its Formulation by 23Na-Multiquantum and Magic-Angle Spinning Nuclear Magnetic Resonance Spectroscopy. Journal of Pharmaceutical Sciences, 2013, 102, 2738-2747.	1.6	4
74	Revealing the mechanism of morphological variation of amorphous drug nanoparticles formed by aqueous dispersion of ternary solid dispersion. International Journal of Pharmaceutics, 2021, 607, 120984.	2.6	4
75	Variable-Temperature NMR Analysis of the Thermodynamics of Polymer Partitioning between Aqueous and Drug-Rich Phases and Its Significance for Amorphous Formulations. Molecular Pharmaceutics, 2021, , .	2.3	4
76	Transition from Amorphous Cyclosporin A Nanoparticles to Size-Reduced Stable Nanocrystals in a Poloxamer 407 Solution. Molecular Pharmaceutics, 2022, 19, 188-199.	2.3	4
77	Salt Cocrystallization of Loxoprofen Sodium with Sugar: Reduction of the Propensity for Hydrate Formation by Forming a Continuous One-Dimensional Chain Structure of Sodium and Sugar. Crystal Growth and Design, 2022, 22, 1094-1103.	1.4	4
78	Mechanistic study of preparation of drug/polymer/surfactant ternary hot extrudates to obtain small and stable drug nanocrystal suspensions. International Journal of Pharmaceutics, 2020, 591, 120003.	2.6	3
79	The nanostructure of rod-like ascorbyl dipalmitate nanoparticles stabilized by a small amount of DSPE-PEG. International Journal of Pharmaceutics, 2021, 602, 120599.	2.6	3
80	Nanostructure and Molecular-Level Characterization of Aminoalkyl Methacrylate Copolymer and the Impact on Drug Solubilization Ability. Molecular Pharmaceutics, 2021, 18, 4111-4121.	2.3	2
81	Computational approach to elucidate the formation and stabilization mechanism of amorphous formulation using molecular dynamics simulation and fragment molecular orbital calculation. International Journal of Pharmaceutics, 2022, 615, 121477.	2.6	2