Wei Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7258472/publications.pdf Version: 2024-02-01

Μει Υλης

#	Article	IF	CITATIONS
1	An ultrapotent RBD-targeted biparatopic nanobody neutralizes broad SARS-CoV-2 variants. Signal Transduction and Targeted Therapy, 2022, 7, 44.	17.1	31
2	Rearrangement of Actin Cytoskeleton by Zika Virus Infection Facilitates Blood–Testis Barrier Hyperpermeability. Virologica Sinica, 2021, 36, 692-705.	3.0	16
3	Identification of Ascomycin against Zika virus infection through screening of natural product library. Antiviral Research, 2021, 196, 105210.	4.1	3
4	Humanized single domain antibodies neutralize SARS-CoV-2 by targeting the spike receptor binding domain. Nature Communications, 2020, 11, 4528.	12.8	120
5	Early-start and conventional-start peritoneal dialysis: a Chinese cohort study on outcome. Renal Failure, 2020, 42, 305-313.	2.1	8
6	Zika NS1–induced ER remodeling is essential for viral replication. Journal of Cell Biology, 2020, 219, .	5.2	39
7	A Human Long Non-coding RNA LncATV Promotes Virus Replication Through Restricting RIG-l–Mediated Innate Immunity. Frontiers in Immunology, 2019, 10, 1711.	4.8	35
8	High-Throughput Screening Identifies Mixed-Lineage Kinase 3 as a Key Host Regulatory Factor in Zika Virus Infection. Journal of Virology, 2019, 93, .	3.4	16
9	Zika virus degrades the ω-3 fatty acid transporter Mfsd2a in brain microvascular endothelial cells and impairs lipid homeostasis. Science Advances, 2019, 5, eaax7142.	10.3	34
10	Interferon down-regulation of miR-1225-3p as an antiviral mechanism through modulating Grb2-associated binding protein 3 expression. Journal of Biological Chemistry, 2018, 293, 5975-5986.	3.4	8
11	Transduction with Lentiviral Vectors Altered the Expression Profile of Host MicroRNAs. Journal of Virology, 2018, 92, .	3.4	16
12	Functional Analysis of Hepatitis C Virus (HCV) Envelope Protein E1 Using a <i>trans</i> -Complementation System Reveals a Dual Role of a Putative Fusion Peptide of E1 in both HCV Entry and Morphogenesis. Journal of Virology, 2017, 91, .	3.4	20
13	Molecular Genetic Characterization of a Chinese Family with Severe Split Hand/Foot Malformation. Genetic Testing and Molecular Biomarkers, 2017, 21, 357-362.	0.7	2
14	Development of a Data-Independent Targeted Metabolomics Method for Relative Quantification Using Liquid Chromatography Coupled with Tandem Mass Spectrometry. Analytical Chemistry, 2017, 89, 6954-6962.	6.5	42
15	Fusion expression of Occludin extracellular loops and an α-helical bundle: A new research model for tight junction. PLoS ONE, 2017, 12, e0175516.	2.5	4
16	Identification of a Potent and Broad-Spectrum Hepatitis C Virus Fusion Inhibitory Peptide from the E2 Stem Domain. Scientific Reports, 2016, 6, 25224.	3.3	11
17	AP1S3 is required for hepatitis C virus infection by stabilizing E2 protein. Antiviral Research, 2016, 131, 26-34.	4.1	7
18	Quantitative Proteomics Analysis of the Hepatitis C Virus Replicon High-Permissive and Low-Permissive Cell Lines. PLoS ONE, 2015, 10, e0142082.	2.5	10

Wei Yang

#	Article	IF	CITATIONS
19	A novel small-molecule inhibitor of hepatitis C virus replication acts by suppressing signal transducer and activator of transcription 3. Journal of Antimicrobial Chemotherapy, 2015, 70, 2013-2023.	3.0	10
20	An intramolecular bond at cluster of differentiation 81 ectodomain is important for hepatitis C virus entry. FASEB Journal, 2015, 29, 4214-4226.	0.5	11
21	Association of Serum Level of Growth Differentiation Factor 15 with Liver Cirrhosis and Hepatocellular Carcinoma. PLoS ONE, 2015, 10, e0127518.	2.5	74
22	Screening and Rational Design of Hepatitis C Virus Entry Inhibitory Peptides Derived from GB Virus A NS5A. Journal of Virology, 2013, 87, 1649-1657.	3.4	18
23	Liquid Chromatography–Tandem Mass Spectrometry-Based Plasma Metabonomics Delineate the Effect of Metabolites' Stability on Reliability of Potential Biomarkers. Analytical Chemistry, 2013, 85, 2606-2610.	6.5	63
24	High-Throughput Profiling of Alpha Interferon- and Interleukin-28B-Regulated MicroRNAs and Identification of let-7s with Anti-Hepatitis C Virus Activity by Targeting IGF2BP1. Journal of Virology, 2013, 87, 9707-9718.	3.4	53
25	Recombinant human interleukin 28B: anti-HCV potency, receptor usage and restricted cell-type responsiveness. Journal of Antimicrobial Chemotherapy, 2012, 67, 1080-1087.	3.0	11
26	A human claudin-1-derived peptide inhibits hepatitis C virus entry. Hepatology, 2012, 56, 507-515.	7.3	49
27	Phospholipid scramblase 1 mediates hepatitis C virus entry into host cells. FEBS Letters, 2011, 585, 2647-2652.	2.8	24
28	Growth Differentiation Factor 15 Is Induced by Hepatitis C Virus Infection and Regulates Hepatocellular Carcinoma-Related Genes. PLoS ONE, 2011, 6, e19967.	2.5	39
29	Systematic identification of microRNA and messenger RNA profiles in hepatitis C virus-infected human hepatoma cells. Virology, 2010, 398, 57-67.	2.4	134
30	Tight Junction Proteins Claudin-1 and Occludin Control Hepatitis C Virus Entry and Are Downregulated during Infection To Prevent Superinfection. Journal of Virology, 2009, 83, 2011-2014.	3.4	303
31	Avian influenza virus A/chicken/Hubei/489/2004 (H5N1) induces caspase-dependent apoptosis in a cell-specific manner. Molecular and Cellular Biochemistry, 2009, 332, 233-241.	3.1	6
32	Novel point mutations in GDF5 associated with two distinct limb malformations in Chinese: brachydactyly type C and proximal symphalangism. Journal of Human Genetics, 2008, 53, 368-374.	2.3	47
33	Fatty acid synthase is up-regulated during hepatitis C virus infection and regulates hepatitis C virus entry and production. Hepatology, 2008, 48, 1396-1403.	7.3	164
34	Correlation of the Tight Junction-like Distribution of Claudin-1 to the Cellular Tropism of Hepatitis C Virus. Journal of Biological Chemistry, 2008, 283, 8643-8653.	3.4	95
35	Myostatin Induces Cyclin D1 Degradation to Cause Cell Cycle Arrest through a Phosphatidylinositol 3-Kinase/AKT/GSK-31² Pathway and Is Antagonized by Insulin-like Growth Factor 1. Journal of Biological Chemistry, 2007, 282, 3799-3808.	3.4	186
36	Association study of ACE2 (angiotensin l-converting enzyme 2) gene polymorphisms with coronary heart disease and myocardial infarction in a Chinese Han population. Clinical Science, 2006, 111, 333-340.	4.3	52

#	Article	IF	CITATIONS
37	Extracellular Signal–Regulated Kinase 1/2 Mitogen-Activated Protein Kinase Pathway Is Involved in Myostatin-Regulated Differentiation Repression. Cancer Research, 2006, 66, 1320-1326.	0.9	120
38	Identification of gene expression modifications in myostatin-stimulated myoblasts. Biochemical and Biophysical Research Communications, 2005, 326, 660-666.	2.1	34