
## Michael B Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7258375/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Rapid Regulation of Glutamate Transport: Where Do We Go from Here?. Neurochemical Research, 2022,<br>47, 61-84.                                                                                  | 1.6 | 4         |
| 2  | Activation of Glutamate Transport Increases Arteriole Diameter in vivo: Implications for Neurovascular Coupling. Frontiers in Cellular Neuroscience, 2022, 16, 831061.                           | 1.8 | 2         |
| 3  | The brain in flux: Genetic, physiologic, and therapeutic perspectives on transporters in the CNS.<br>Neurochemistry International, 2021, 144, 104980.                                            | 1.9 | 0         |
| 4  | Reciprocal communication between astrocytes and endothelial cells is required for astrocytic glutamate transporter 1 (GLT-1) expression. Neurochemistry International, 2020, 139, 104787.        | 1.9 | 17        |
| 5  | Glutamate Transporters and Mitochondria: Signaling, Co-compartmentalization, Functional Coupling, and Future Directions. Neurochemical Research, 2020, 45, 526-540.                              | 1.6 | 25        |
| 6  | Behavioral analyses of animal models of intellectual and developmental disabilities. Neurobiology of<br>Learning and Memory, 2019, 165, 107087.                                                  | 1.0 | 1         |
| 7  | Intellectual and developmental disabilities research centers: Fifty years of scientific accomplishments. Annals of Neurology, 2019, 86, 332-343.                                                 | 2.8 | 5         |
| 8  | Molecularly defined cortical astroglia subpopulation modulates neurons via secretion of Norrin.<br>Nature Neuroscience, 2019, 22, 741-752.                                                       | 7.1 | 64        |
| 9  | The brain in flux: Genetic, physiologic, and therapeutic perspectives on transporters in the CNS.<br>Neurochemistry International, 2019, 123, 1-6.                                               | 1.9 | 4         |
| 10 | Regulation of mitochondrial dynamics in astrocytes: Mechanisms, consequences, and unknowns. Glia, 2018, 66, 1213-1234.                                                                           | 2.5 | 103       |
| 11 | Current technical approaches to brain energy metabolism. Glia, 2018, 66, 1138-1159.                                                                                                              | 2.5 | 40        |
| 12 | Mice exposed to bisphenol A exhibit depressive-like behavior with neurotransmitter and neuroactive steroid dysfunction. Hormones and Behavior, 2018, 102, 93-104.                                | 1.0 | 46        |
| 13 | Role of Astrocytic Mitochondria in Limiting Ischemic Brain Injury?. Physiology, 2018, 33, 99-112.                                                                                                | 1.6 | 15        |
| 14 | Protocadherin 10 alters Î <sup>3</sup> oscillations, amino acid levels, and their coupling; baclofen partially restores these oscillatory deficits. Neurobiology of Disease, 2017, 108, 324-338. | 2.1 | 15        |
| 15 | Brain endothelial cells induce astrocytic expression of the glutamate transporter <scp>GLT</scp> â€1 by<br>a Notchâ€dependent mechanism. Journal of Neurochemistry, 2017, 143, 489-506.          | 2.1 | 27        |
| 16 | Erratum. Advances in Neurobiology, 2017, 15, E1-E1.                                                                                                                                              | 1.3 | 1         |
| 17 | Transient Oxygen/Glucose Deprivation Causes a Delayed Loss of Mitochondria and Increases<br>Spontaneous Calcium Signaling in Astrocytic Processes. Journal of Neuroscience, 2016, 36, 7109-7127. | 1.7 | 42        |
| 18 | Tagging methyl-CpC-binding domain proteins reveals different spatiotemporal expression and supports distinct functions. Epigenomics, 2016, 8, 455-473.                                           | 1.0 | 25        |

MICHAEL B ROBINSON

| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Transcriptional Regulation of Glutamate Transporters. Advances in Pharmacology, 2016, 76, 103-145.                                                                                                                                                           | 1.2 | 52        |
| 20 | The transcription factor Pax6 contributes to the induction of GLTâ€1 expression in astrocytes through an interaction with a distal enhancer element. Journal of Neurochemistry, 2016, 136, 262-275.                                                          | 2.1 | 28        |
| 21 | Astroglial glutamate transporters coordinate excitatory signaling and brain energetics.<br>Neurochemistry International, 2016, 98, 56-71.                                                                                                                    | 1.9 | 129       |
| 22 | The circadian gene Rev-erbl $$ ± improves cellular bioenergetics and provides preconditioning for protection against oxidative stress. Free Radical Biology and Medicine, 2016, 93, 177-189.                                                                 | 1.3 | 41        |
| 23 | Displacing hexokinase from mitochondrial voltageâ€dependent anion channel impairs GLTâ€1â€mediated<br>glutamate uptake but does not disrupt interactions between GLTâ€1 and mitochondrial proteins. Journal<br>of Neuroscience Research, 2015, 93, 999-1008. | 1.3 | 27        |
| 24 | Regulation of brain glutamate metabolism by nitric oxide and S-nitrosylation. Science Signaling, 2015,<br>8, ra68.                                                                                                                                           | 1.6 | 108       |
| 25 | Reciprocal Regulation of Mitochondrial Dynamics and Calcium Signaling in Astrocyte Processes.<br>Journal of Neuroscience, 2015, 35, 15199-15213.                                                                                                             | 1.7 | 84        |
| 26 | Neuronal Activity and Glutamate Uptake Decrease Mitochondrial Mobility in Astrocytes and Position<br>Mitochondria Near Glutamate Transporters. Journal of Neuroscience, 2014, 34, 1613-1624.                                                                 | 1.7 | 126       |
| 27 | The brain in flux: Genetic, physiologic, and therapeutic perspectives on transporters in the CNS.<br>Neurochemistry International, 2014, 73, 1-3.                                                                                                            | 1.9 | 2         |
| 28 | Behavioral Changes and Dopaminergic Dysregulation in Mice Lacking the Nuclear Receptor Rev-erbα.<br>Molecular Endocrinology, 2014, 28, 490-498.                                                                                                              | 3.7 | 64        |
| 29 | Genetic deletion of the neuronal glutamate transporter, EAAC1, results in decreased neuronal death<br>after pilocarpine-induced status epilepticus. Neurochemistry International, 2014, 73, 152-158.                                                         | 1.9 | 11        |
| 30 | Inhibitors of Glutamate Dehydrogenase Block Sodium-Dependent Glutamate Uptake in Rat Brain<br>Membranes. Frontiers in Endocrinology, 2013, 4, 123.                                                                                                           | 1.5 | 56        |
| 31 | The glutamate transporter, GLAST, participates in a macromolecular complex that supports glutamate metabolism. Neurochemistry International, 2012, 61, 566-574.                                                                                              | 1.9 | 106       |
| 32 | Co-compartmentalization of the Astroglial Glutamate Transporter, GLT-1, with Glycolytic Enzymes and<br>Mitochondria. Journal of Neuroscience, 2011, 31, 18275-18288.                                                                                         | 1.7 | 175       |
| 33 | Nuclear Factor-ÂB Contributes to Neuron-Dependent Induction of Glutamate Transporter-1 Expression<br>in Astrocytes. Journal of Neuroscience, 2011, 31, 9159-9169.                                                                                            | 1.7 | 79        |
| 34 | Epigenetic regulation of neuronâ€dependent induction of astroglial synaptic protein GLT1. Glia, 2010, 58,<br>277-286.                                                                                                                                        | 2.5 | 74        |
| 35 | Intracerebral microdialysis during deep brain stimulation surgery. Journal of Neuroscience Methods,<br>2010, 190, 106-111.                                                                                                                                   | 1.3 | 29        |
| 36 | Presynaptic Regulation of Astroglial Excitatory Neurotransmitter Transporter GLT1. Neuron, 2009, 61,<br>880-894.                                                                                                                                             | 3.8 | 215       |

MICHAEL B ROBINSON

| #  | Article                                                                                                                                                                                                          | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Degradation of Glial Glutamate Transporter mRNAs Is Selectively Blockedby Inhibition of Cellular<br>Transcription. Journal of Neurochemistry, 2008, 75, 2252-2258.                                               | 2.1 | 25        |
| 38 | Internalization and degradation of the glutamate transporter GLT-1 in response to phorbol ester.<br>Neurochemistry International, 2008, 52, 709-722.                                                             | 1.9 | 50        |
| 39 | Ubiquitination-mediated internalization and degradation of the astroglial glutamate transporter,<br>GLT-1. Neurochemistry International, 2008, 53, 296-308.                                                      | 1.9 | 59        |
| 40 | The Endoplasmic Reticulum Exit of Glutamate Transporter Is Regulated by the Inducible Mammalian<br>Yip6b/GTRAP3-18 Protein. Journal of Biological Chemistry, 2008, 283, 6175-6183.                               | 1.6 | 65        |
| 41 | N-Methyl-d-aspartate Receptor-dependent Regulation of the Clutamate Transporter Excitatory Amino<br>Acid Carrier 1. Journal of Biological Chemistry, 2007, 282, 17594-17607.                                     | 1.6 | 31        |
| 42 | Caveolin-1 Regulates the Delivery and Endocytosis of the Glutamate Transporter, Excitatory Amino<br>Acid Carrier 1. Journal of Biological Chemistry, 2007, 282, 29855-29865.                                     | 1.6 | 50        |
| 43 | The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. Neurochemistry International, 2007, 51, 333-355.                                                  | 1.9 | 521       |
| 44 | Constitutive endocytosis and recycling of the neuronal glutamate transporter, excitatory amino acid carrier 1. Journal of Neurochemistry, 2007, 103, 1917-1931.                                                  | 2.1 | 56        |
| 45 | A dominant-negative variant of SNAP-23 decreases the cell surface expression of the neuronal glutamate transporter EAAC1 by slowing constitutive delivery. Neurochemistry International, 2006, 48, 596-603.      | 1.9 | 28        |
| 46 | Regulation of astrocytic glutamate transporter expression by Akt: evidence for a selective transcriptional effect on the GLT-1/EAAT2 subtype. Journal of Neurochemistry, 2006, 97, 759-771.                      | 2.1 | 127       |
| 47 | Behavioral and Neurochemical Alterations in Mice Lacking the RNA-Binding Protein Translin. Journal of Neuroscience, 2006, 26, 2184-2196.                                                                         | 1.7 | 65        |
| 48 | A Carboxyl-terminal Determinant of the Neuronal Glutamate Transporter, EAAC1, Is Required for<br>Platelet-derived Growth Factor-dependent Trafficking. Journal of Biological Chemistry, 2006, 281,<br>4876-4886. | 1.6 | 41        |
| 49 | Impaired Glutamate Transport in a Mouse Model of Tau Pathology in Astrocytes. Journal of Neuroscience, 2006, 26, 644-654.                                                                                        | 1.7 | 109       |
| 50 | Evidence that protein kinase Cα interacts with and regulates the glial glutamate transporter GLT-1.<br>Journal of Neurochemistry, 2005, 94, 1180-1188.                                                           | 2.1 | 57        |
| 51 | Evidence that Akt mediates platelet-derived growth factor-dependent increases in activity and surface expression of the neuronal glutamate transporter, EAAC1. Neuropharmacology, 2005, 49, 872-882.             | 2.0 | 34        |
| 52 | Identification of Motifs Involved in Endoplasmic Reticulum Retention-Forward Trafficking of the GLT-1<br>Subtype of Glutamate Transporter. Journal of Neuroscience, 2004, 24, 5183-5192.                         | 1.7 | 43        |
| 53 | Differential regulation of GLAST immunoreactivity and activity by protein kinase C: evidence for modification of amino and carboxyl termini. Journal of Neurochemistry, 2004, 91, 1151-1163.                     | 2.1 | 47        |
| 54 | Neurotransmitter transporters: why dance with so many partners?. Current Opinion in<br>Pharmacology, 2004, 4, 30-35.                                                                                             | 1.7 | 49        |

| #  | Article                                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Rapid Trafficking of the Neuronal Glutamate Transporter, EAAC1. Journal of Biological Chemistry, 2004, 279, 34505-34513.                                                                                                                                | 1.6 | 125       |
| 56 | Protein KINASE C-Dependent Remodeling of Glutamate Transporter Function. Molecular Interventions:<br>Pharmacological Perspectives From Biology, Chemistry and Genomics, 2004, 4, 48-58.                                                                 | 3.4 | 44        |
| 57 | Rottlerin, an inhibitor of protein kinase Cδ (PKCδ), inhibits astrocytic glutamate transport activity and<br>reduces GLAST immunoreactivity by a mechanism that appears to be PKCδ-independent. Journal of<br>Neurochemistry, 2003, 86, 635-645.        | 2.1 | 60        |
| 58 | Signaling Pathways Take Aim at Neurotransmitter Transporters. Science Signaling, 2003, 2003, pe50.                                                                                                                                                      | 1.6 | 8         |
| 59 | Phorbol Myristate Acetate-Dependent Interaction of Protein Kinase Cα and the Neuronal Glutamate<br>Transporter EAAC1. Journal of Neuroscience, 2003, 23, 5589-5593.                                                                                     | 1.7 | 71        |
| 60 | A Pilot Study ofIn VivoLiver-Directed Gene Transfer with an Adenoviral Vector in Partial Ornithine<br>Transcarbamylase Deficiency. Human Gene Therapy, 2002, 13, 163-175.                                                                               | 1.4 | 337       |
| 61 | Protein Kinase C Activation Decreases Cell Surface Expression of the GLT-1 Subtype of Glutamate<br>Transporter. Journal of Biological Chemistry, 2002, 277, 45741-45750.                                                                                | 1.6 | 131       |
| 62 | Regulation of the Neuronal Glutamate Transporter Excitatory Amino Acid Carrier-1 (EAAC1) by<br>Different Protein Kinase C Subtypes. Molecular Pharmacology, 2002, 62, 901-910.                                                                          | 1.0 | 96        |
| 63 | Cerebrospinal fluid glutamine, tryptophan, and tryptophan metabolite concentrations in dogs with portosystemic shunts. American Journal of Veterinary Research, 2002, 63, 1167-1171.                                                                    | 0.3 | 27        |
| 64 | Increased Expression of the Neuronal Glutamate Transporter (EAAT3/EAAC1) in Hippocampal and Neocortical Epilepsy. Epilepsia, 2002, 43, 211-218.                                                                                                         | 2.6 | 131       |
| 65 | The Effects of l-Glutamate and trans-(±)-1-Amino-1,3-Cyclopentanedicarboxylate on Phosphoinositide<br>Hydrolysis Can Be Pharmacologically Differentiated. Journal of Neurochemistry, 2002, 63, 1291-1302.                                               | 2.1 | 17        |
| 66 | Dibutyryl-cAMP (dbcAMP) up-regulates astrocytic chloride-dependent l-[3H]glutamate transport and expression of both system xcâ' subunits. Journal of Neurochemistry, 2001, 78, 276-286.                                                                 | 2.1 | 65        |
| 67 | Regulated trafficking of neurotransmitter transporters: common notes but different melodies.<br>Journal of Neurochemistry, 2001, 80, 1-11.                                                                                                              | 2.1 | 184       |
| 68 | Differences in the Human and Mouse Amino-Terminal Leader Peptides of Ornithine Transcarbamylase<br>Affect Mitochondrial Import and Efficacy of Adenoviral Vectors. Human Gene Therapy, 2001, 12,<br>1035-1046.                                          | 1.4 | 10        |
| 69 | Regulation of glutamate transporters in health and disease. Progress in Brain Research, 2001, 132, 267-286.                                                                                                                                             | 0.9 | 115       |
| 70 | Epidermal Growth Factor Receptor Agonists Increase Expression of Glutamate Transporter GLT-1 in<br>Astrocytes through Pathways Dependent on Phosphatidylinositol 3-Kinase and Transcription Factor<br>NF-κB. Molecular Pharmacology, 2000, 57, 667-678. | 1.0 | 215       |
| 71 | Platelet-derived Growth Factor Rapidly Increases Activity and Cell Surface Expression of the EAAC1<br>Subtype of Clutamate Transporter through Activation of Phosphatidylinositol 3-Kinase. Journal of<br>Biological Chemistry, 2000, 275, 5228-5237.   | 1.6 | 116       |
| 72 | Substrate-induced up-regulation of Na+-dependent glutamate transport activity. Neurochemistry<br>International, 2000, 37, 147-162.                                                                                                                      | 1.9 | 88        |

MICHAEL B ROBINSON

| #  | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Recombinant Adenovirus Gene Transfer in Adults with Partial Ornithine Transcarbamylase Deficiency<br>(OTCD). Human Gene Therapy, 1999, 10, 2419-2437.                                                                | 1.4  | 42        |
| 74 | Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury.<br>Nature Medicine, 1999, 5, 1396-1402.                                                                          | 15.2 | 281       |
| 75 | Correction of Ureagenesis after Gene Transfer in an Animal Model and after Liver Transplantation in<br>Humans with Ornithine Transcarbamylase Deficiency. Pediatric Research, 1999, 46, 588-588.                     | 1.1  | 19        |
| 76 | Expression Patterns and Regulation of Glutamate Transporters in the Developing and Adult Nervous System. Critical Reviews in Neurobiology, 1999, 13, 169-197.                                                        | 3.3  | 152       |
| 77 | Dihydrokainate-sensitive neuronal glutamate transport is required for protection of rat cortical neurons in culture against synaptically released glutamate. European Journal of Neuroscience, 1998, 10, 2523-2531.  | 1.2  | 39        |
| 78 | Rapid Communication The glutamate transporter, GLT-1, is expressed in cultured hippocampal neurons.<br>Neurochemistry International, 1998, 33, 95-100.                                                               | 1.9  | 54        |
| 79 | [13] Examination of glutamate transporter heterogeneity using synaptosomal preparations. Methods<br>in Enzymology, 1998, 296, 189-202.                                                                               | 0.4  | 21        |
| 80 | Multiple Signaling Pathways Regulate Cell Surface Expression and Activity of the Excitatory Amino<br>Acid Carrier 1 Subtype of Glu Transporter in C6 Glioma. Journal of Neuroscience, 1998, 18, 2475-2485.           | 1.7  | 279       |
| 81 | Regulation of the Glial Na <sup>+</sup> -Dependent Glutamate Transporters by Cyclic AMP Analogs and<br>Neurons. Molecular Pharmacology, 1998, 53, 355-369.                                                           | 1.0  | 292       |
| 82 | Adenovirus-Mediated in Vivo Gene Transfer Rapidly Protects Ornithine Transcarbamylase-Deficient<br>Mice from an Ammonium Challenge. Pediatric Research, 1997, 41, 527-534.                                           | 1.1  | 30        |
| 83 | Heterogeneity and Functional Properties of Subtypes of Sodium-Dependent Glutamate Transporters in the Mammalian Central Nervous System. Advances in Pharmacology, 1996, 37, 69-115.                                  | 1.2  | 170       |
| 84 | The Glutamate Transport Inhibitor L-trans-pyrrolidine-2,4-dicarboxylate Indirectly Evokes NMDA<br>Receptor Mediated Neurotoxicity in Rat Cortical Cultures. European Journal of Neuroscience, 1996, 8,<br>1840-1852. | 1.2  | 65        |
| 85 | Prolonged Metabolic Correction in Adult Ornithine Transcarbamylase-deficient Mice with Adenoviral<br>Vectors. Journal of Biological Chemistry, 1996, 271, 3639-3646.                                                 | 1.6  | 146       |
| 86 | Rapid Stimulation of EAAC1â€Mediated Na <sup>+</sup> â€Dependent <scp>l</scp> â€Glutamate Transport<br>Activity in C6 Glioma Cells by Phorbol Ester. Journal of Neurochemistry, 1996, 67, 508-516.                   | 2.1  | 125       |
| 87 | Prospects for gene therapy in ornithine carbamoyltransferase deficiency and other urea cycle disorders. Mental Retardation and Developmental Disabilities Research Reviews, 1995, 1, 62-70.                          | 3.5  | 4         |
| 88 | Neurotransmitter alterations in congenital hyperammonemia. Mental Retardation and Developmental<br>Disabilities Research Reviews, 1995, 1, 201-207.                                                                  | 3.5  | 4         |
| 89 | Intrastriatal injections of the succinate dehydrogenase inhibitor, malonate, cause a rise in extracellular amino acids that is blocked by MK-801. Brain Research, 1995, 684, 221-224.                                | 1.1  | 29        |
| 90 | Evidence of excitotoxicity in the brain of the ornithine carbamoyltransferase deficient sparse fur<br>mouse. Developmental Brain Research, 1995, 90, 35-44.                                                          | 2.1  | 43        |

| #   | Article                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Pharmacology of Sodiumâ€Dependent Highâ€Affinity <scp>l</scp> â€{ <sup>3</sup> H]Glutamate Transport in<br>Glial Cultures. Journal of Neurochemistry, 1995, 64, 2572-2580.                                                                                | 2.1 | 73        |
| 92  | Quinolinic acid in children with congenital hyperammonemia. Annals of Neurology, 1993, 34, 676-681.                                                                                                                                                       | 2.8 | 48        |
| 93  | Subtypes of Sodium-Dependent High-Affinity L-[3H]Glutamate Transport Activity: Pharmacologic<br>Specificity and Regulation by Sodium and Potassium. Journal of Neurochemistry, 1993, 60, 167-179.                                                         | 2.1 | 129       |
| 94  | Inhibition of Glutamate Uptake withl-trans-Pyrrolidine-2,4-Dicarboxylate Potentiates Glutamate<br>Toxicity in Primary Hippocampal Cultures. Journal of Neurochemistry, 1993, 61, 2099-2103.                                                               | 2.1 | 90        |
| 95  | Repeated exposure to hyperbaric oxygen sensitizes rats to oxygen-induced seizures. Brain Research, 1993, 632, 143-149.                                                                                                                                    | 1.1 | 27        |
| 96  | Multiple Subtypes of Excitatory Amino Acid Receptors Coupled to the Hydrolysis of Phosphoinositides in Rat Brain. Journal of Neurochemistry, 1993, 61, 586-593.                                                                                           | 2.1 | 15        |
| 97  | Brain Serotonin2and Serotonin1AReceptors Are Altered in the Congenitally Hyperammonemic Sparse<br>Fur Mouse. Journal of Neurochemistry, 1992, 58, 1016-1022.                                                                                              | 2.1 | 39        |
| 98  | Multiple Mechanisms for Inhibition of Excitatory Amino Acid Receptors Coupled to Phosphoinositide<br>Hydrolysis. Journal of Neurochemistry, 1992, 59, 1893-1904.                                                                                          | 2.1 | 32        |
| 99  | Pharmacologically distinct sodium-dependentl-[3H]glutamate transport processes in rat brain. Brain<br>Research, 1991, 544, 196-202.                                                                                                                       | 1.1 | 155       |
| 100 | Seizures decrease regional enzymatic hydrolysis of N-acetyl-aspartylglutamate in rat brain. Brain<br>Research, 1989, 505, 130-134.                                                                                                                        | 1.1 | 20        |
| 101 | The effects of N-acetylated alpha-linked acidic dipeptidase (NAALADase) inhibitors on [3H]NAAG catabolism in vivo. Neuroscience Letters, 1989, 100, 295-300.                                                                                              | 1.0 | 48        |
| 102 | Calcium-Dependent Evoked Release of N[3H]Acetylaspartylglutamate from the Optic Pathway. Journal of Neurochemistry, 1988, 51, 1956-1959.                                                                                                                  | 2.1 | 67        |
| 103 | Hydrolysis of the Brain Dipeptide N-Acetyl-I-Aspartyl-I-Clutamate: Subcellular and Regional<br>Distribution, Ontogeny, and the Effect of Lesions on N-Acetylated-?-Linked Acidic Dipeptidase Activity.<br>Journal of Neurochemistry, 1988, 50, 1200-1209. | 2.1 | 78        |
| 104 | Effect of Sodium Benzoate and Sodium Phenylacetate on Brain Serotonin Turnover in the Ornithine<br>Transcarbamylase-Deficient Sparse-Fur Mouse. Pediatric Research, 1988, 23, 368-374.                                                                    | 1.1 | 34        |
| 105 | Glutamate and related acidic excitatory neurotransmitters: from basic science to clinical application.<br>FASEB Journal, 1987, 1, 446-455.                                                                                                                | 0.2 | 188       |
| 106 | Cyclic analogs of 2-amino-4-phosphonobutanoic acid (APB) and their inhibition of hippocampal<br>excitatory transmission and displacement of [3H]APB binding. Journal of Medicinal Chemistry, 1986, 29,<br>1988-1995.                                      | 2.9 | 37        |
| 107 | Exposure of hippocampal slices to quisqualate sensitizes synaptic responses to phosphonate-containing analogues of glutamate. Brain Research, 1986, 381, 187-190.                                                                                         | 1.1 | 46        |
| 108 | Kynurenic acid as an antagonist of hippocampal excitatory transmission. Brain Research, 1984, 309,<br>119-126.                                                                                                                                            | 1.1 | 61        |

| #   | Article                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Structure - function relationships for gamma-substituted glutamate analogues on dentate granule cells. Brain Research, 1983, 272, 299-309. | 1.1 | 31        |