Yiwei Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/72581/publications.pdf

Version: 2024-02-01

	687363	610901
608	13	24
citations	h-index	g-index
36	36	1256
docs citations	times ranked	citing authors
	citations 36	608 13 citations h-index 36 36

#	Article	IF	CITATIONS
1	Current Status of Outdoor Lifetime Testing of Organic Photovoltaics. Advanced Science, 2018, 5, 1800434.	11.2	73
2	Lightâ€Soakingâ€Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Lowâ€Temperatureâ€Processed TiO ₂ Electronâ€Transport Layer. Advanced Materials, 2017, 29, 1604044.	21.0	68
3	PCDTBT based solar cells: one year of operation under real-world conditions. Scientific Reports, 2016, 6, 21632.	3.3	52
4	Understanding and controlling morphology evolution via DIO plasticization in PffBT4T-2OD/PC71BM devices. Scientific Reports, 2017, 7, 44269.	3.3	47
5	Large Crystalline Domains and an Enhanced Exciton Diffusion Length Enable Efficient Organic Solar Cells. Chemistry of Materials, 2019, 31, 6548-6557.	6.7	42
6	Long-range exciton diffusion in non-fullerene acceptors and coarse bulk heterojunctions enable highly efficient organic photovoltaics. Journal of Materials Chemistry A, 2020, 8, 15687-15694.	10.3	33
7	Comparative indoor and outdoor stability measurements of polymer based solar cells. Scientific Reports, 2017, 7, 1305.	3.3	32
8	Impact of fluorine substitution upon the photovoltaic properties of benzothiadiazole-fluorene alternate copolymers. RSC Advances, 2015, 5, 46386-46394.	3.6	27
9	High efficiency arrays of polymer solar cells fabricated by sprayâ€coating in air. Progress in Photovoltaics: Research and Applications, 2016, 24, 275-282.	8.1	27
10	Vertical stratification and its impact on device performance in a polycarbazole based copolymer solar cells. Journal of Materials Chemistry C, 2015, 3, 4007-4015.	5 . 5	25
11	Tailoring exciton diffusion and domain size in photovoltaic small molecules by annealing. Journal of Materials Chemistry C, 2019, 7, 7922-7928.	5.5	21
12	Exciton Self-Trapping Dynamics in 1D Perovskite Single Crystals: Effect of Quantum Tunnelling. Journal of Physical Chemistry Letters, 2021, 12, 4509-4516.	4.6	20
13	Influence of grain size at first monolayer on bias-stress effect in pentacene-based thin film transistors. Applied Physics Letters, 2013, 103, .	3.3	14
14	Effect of fullerene acceptor on the performance of solar cells based on PffBT4T-2OD. Physical Chemistry Chemical Physics, 2018, 20, 19023-19029.	2.8	14
15	Fabricating high performance conventional and inverted polymer solar cells by spray coating in air. Vacuum, 2017, 139, 154-158.	3.5	13
16	Enhanced exciton harvesting in a planar heterojunction organic photovoltaic device by solvent vapor annealing. Organic Electronics, 2019, 70, 162-166.	2.6	11
17	Ultrafast two-photon optical switch using single crystal hybrid halide perovskites. Optica, 2021, 8, 735.	9.3	10
18	Polymer Light Emitting Diodes Powered via Paper-Mounted Electronics. Journal of Display Technology, 2016, 12, 583-588.	1.2	9

#	Article	IF	CITATIONS
19	Interface limited hole extraction from methylammonium lead iodide films. Materials Horizons, 2020, 7, 943-948.	12.2	9
20	Pyrene-benzothiadiazole-based copolymers for application in photovoltaic devices. Polymers for Advanced Technologies, 2017, 28, 193-200.	3.2	8
21	Temperature-Dependent Gate Bias Stress Effect in Dioctylbenzothieno[2,3-b]benzothiophene-Based Thin-Film Transistor. IEEE Transactions on Electron Devices, 2017, 64, 1723-1727.	3.0	7
22	Does 1,8-diiodooctane affect the aggregation state of PC ₇₁ BM in solution?. Royal Society Open Science, 2018, 5, 180937.	2.4	7
23	A perovskite single crystal with one-dimensional structure enables photodetection with negligible hysteresis. Journal of Materials Chemistry C, 2021, 9, 3470-3476.	5.5	6
24	Preparation and photovoltaic properties of pyrene-thieno[3,4-c]pyrrole-4,6-dione-based donor-acceptor polymers. European Polymer Journal, 2016, 85, 225-235.	5.4	5
25	Pyrene-benzo[1,2,5]thiadiazole based conjugated polymers for application in BHJ solar cells. Journal of Saudi Chemical Society, 2020, 24, 484-491.	5.2	5
26	MoS ₂ /pentacene hybrid complementary inverter based photodetector with amplified voltage–output. Nanotechnology, 2021, 32, 015203.	2.6	5
27	Triisopropylsilylacetylene-functionalised anthracene-alt-benzothiadiazole copolymers for application in bulk heterojunction solar cells. RSC Advances, 2015, 5, 101607-101615.	3.6	4
28	End-emitting nano organic light emitting diodes (OLEDs) with directional output. Nanophotonics, 2020, 9, 2905-2913.	6.0	4
29	An ultrastable perovskite–polymer exciplex through self energy-level adaption for under-water light-emitting devices. Journal of Materials Chemistry C, 2022, 10, 8609-8616.	5.5	4
30	Phototransistors Based on Organic Small Molecules–Ruddlesdenâ€Popper Layered Perovskite Single Crystal Heterojunctions. Advanced Materials Interfaces, 0, , 2101850.	3.7	3
31	Polymer Solar Cells: Lightâ€Soakingâ€Free Inverted Polymer Solar Cells with an Efficiency of 10.5% by Compositional and Surface Modifications to a Lowâ€Temperatureâ€Processed TiO ₂ Electronâ€Transport Layer (Adv. Mater. 1/2017). Advanced Materials, 2017, 29, .	21.0	1
32	Secondary Exciplex by Electromer Mediated Charge Transfer for Multiband Electroluminescence. ACS Macro Letters, 2021, 10, 1236-1242.	4.8	1
33	Low-Temperature Discrimination of Defect States by Exciton Dynamics in Thin-Film MAPbBr ₃ Perovskite. Journal of Physical Chemistry Letters, 2022, 13, 6093-6100.	4.6	1
34	有机场æ•̂应晶体管å⁻¼ç"µæœºå^¶åŠå…¶ç¨³å®šæ€§ç"ç©¶. Chinese Science Bulletin, 2013, 58, 2	24 &7. 72494	1. 0
35	Femtosecond optical switch using molecular two-photon absorption with multi-step charge dissociation. Journal of Materials Chemistry C, 0, , .	5.5	0
36	Amplified Spontaneous Emission of Perovskite in Water: Towards Under-water Lasing. Materials Today Physics, 2022, , 100686.	6.0	0