MD SELIM HABIB

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7258050/publications.pdf

Version: 2024-02-01

50 papers 1,717 citations

236925 25 h-index 276875 41 g-index

50 all docs

50 docs citations

50 times ranked

793 citing authors

#	Article	IF	CITATIONS
1	Hollow Core Inhibited Coupled Antiresonant Terahertz Fiber: A Numerical and Experimental Study. IEEE Transactions on Terahertz Science and Technology, 2021, 11, 245-260.	3.1	24
2	Multi-wavelength high-energy gas-filled fiber Raman laser spanning from 1.53  Âμm to 2.4  Âμm Letters, 2021, 46, 452.	. Optics	13
3	Impact of cladding elements on the loss performance of hollow-core anti-resonant fibers. Optics Express, 2021, 29, 3359.	3.4	39
4	Enhanced birefringence in conventional and hybrid anti-resonant hollow-core fibers. Optics Express, 2021, 29, 12516.	3.4	32
5	Noise Performance and Long-Term Stability of Near- and Mid-IR Gas-Filled Fiber Raman Lasers. Journal of Lightwave Technology, 2021, 39, 3560-3567.	4.6	9
6	Noise and spectral stability of deep-UV gas-filled fiber-based supercontinuum sources driven by ultrafast mid-IR pulses. Scientific Reports, 2020, 10, 4912.	3.3	28
7	Highly Birefringent, Low-Loss, and Near-Zero Flat Dispersion ENZ Based THz Photonic Crystal Fibers. IEEE Photonics Journal, 2020, 12, 1-9.	2.0	6
8	S ² Measurements Showing Suppression of Higher Order Modes in Confined Rare Earth Doped Large Core Fibers. Journal of Lightwave Technology, 2020, 38, 1953-1958.	4.6	6
9	Mode-selective few-mode Brillouin fiber lasers based on intramodal and intermodal SBS. Optics Letters, 2020, 45, 2323.	3.3	9
10	High pulse energy and quantum efficiency mid-infrared gas Raman fiber laser targeting CO ₂ absorption at 4.2  Âμm. Optics Letters, 2020, 45, 1938.	3.3	29
11	Novel hollow-core asymmetric conjoined-tube anti-resonant fiber for low-loss THz wave guidance. OSA Continuum, 2020, 3, 1169.	1.8	28
12	Extreme UV Light Generation Through Dispersive Wave Trapping in a Tapered Gas-Filled Hollow Fiber. IEEE Photonics Technology Letters, 2019, 31, 795-798.	2.5	8
13	Deep-UV to Mid-IR Supercontinuum Generation driven by Mid-IR Ultrashort Pulses in a Gas-filled Hollow-core Fiber. Scientific Reports, 2019, 9, 4446.	3.3	78
14	Multioctave supercontinuum from visible to mid-infrared and bend effects on ultrafast nonlinear dynamics in gas-filled hollow-core fiber. Applied Optics, 2019, 58, D7.	1.8	7
15	Poor-man's model of hollow-core anti-resonant fibers. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 69.	2.1	21
16	Single-mode, low loss hollow-core anti-resonant fiber designs. Optics Express, 2019, 27, 3824.	3.4	117
17	Low-crosstalk few-mode EDFAs using retro-reflection for single-mode fiber trunk lines and networks. Optics Express, 2019, 27, 35962.	3.4	8
18	Near-octave intense mid-infrared by adiabatic down-conversion in hollow anti-resonant fiber. Optics Letters, 2019, 44, 1084.	3.3	12

#	Article	IF	CITATIONS
19	Localized surface plasmon resonance biosensor: an improved technique for SERS response intensification. Optics Letters, 2019, 44, 1134.	3.3	55
20	Mid-IR supercontinuum generation in birefringent, low loss, ultra-high numerical aperture Ge-As-Se-Te chalcogenide step-index fiber. Optical Materials Express, 2019, 9, 2617.	3.0	24
21	Multi-stage generation of extreme ultraviolet dispersive waves by tapering gas-filled hollow-core anti-resonant fibers. Optics Express, 2018, 26, 24357.	3.4	20
22	Soliton-plasma nonlinear dynamics in mid-IR gas-filled hollow-core fibers: publisher's note. Optics Letters, 2017, 42, 2943.	3.3	0
23	A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission. IEEE Photonics Technology Letters, 2016, 28, 1537-1540.	2.5	78
24	Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements. Optics Express, 2016, 24, 8429.	3.4	94
25	A new photonic crystal fiber design on the high negative ultra-flattened dispersion for both X and Y polarization modes. Optik, 2016, 127, 8670-8677.	2.9	6
26	A Novel Low Loss, Highly Birefringent Photonic Crystal Fiber in THz Regime. IEEE Photonics Technology Letters, 2016, 28, 899-902.	2.5	81
27	Novel porous fiber based on dual-asymmetry for low-loss polarization maintaining THz wave guidance. Optics Letters, 2016, 41, 440.	3.3	58
28	Low-Loss Hollow-Core Anti-Resonant Fibers With Semi-Circular Nested Tubes. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 156-161.	2.9	37
29	A single mode hybrid cladding circular photonic crystal fiber dispersion compensation and sensing applications. Photonics and Nanostructures - Fundamentals and Applications, 2015, 14, 63-70.	2.0	29
30	Low-loss rotated porous core hexagonal single-mode fiber in THz regime. Optical Fiber Technology, 2015, 24, 38-43.	2.7	61
31	Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes. Optics Express, 2015, 23, 17394.	3.4	89
32	Low Loss Single-Mode Porous-Core Kagome Photonic Crystal Fiber for THz Wave Guidance. Journal of Lightwave Technology, 2015, 33, 4027-4031.	4.6	68
33	Extremely High-Birefringent Asymmetric Slotted-Core Photonic Crystal Fiber in THz Regime. IEEE Photonics Technology Letters, 2015, 27, 2222-2225.	2.5	68
34	Highly birefringent photonic crystal fiber with ultra-flattened negative dispersion over S  + â€‱Câbands. Applied Optics, 2015, 54, 2786.	쀉ậ€‰-	⊦  Lâ
35	Residual dispersion compensation over the S + C + L + U wavelength bands using highly birefringent octagonal photonic crystal fiber. Applied Optics, 2014, 53, 3057.	1.8	39
36	Highly nonlinear and highly birefringent dispersion compensating photonic crystal fiber. Optical Fiber Technology, 2014, 20, 32-38.	2.7	91

#	Article	IF	Citations
37	Design of hybrid photonic crystal fiber: Polarization and dispersion properties. Photonics and Nanostructures - Fundamentals and Applications, 2014, 12, 205-211.	2.0	45
38	Maintaining single polarization and dispersion compensation with modified rectangular microstructure optical fiber. Optik, 2014, 125, 4030-4034.	2.9	5
39	A single mode ultra flat high negative residual dispersion compensating photonic crystal fiber. Optical Fiber Technology, 2014, 20, 328-332.	2.7	32
40	Highly birefringent broadband-dispersion-compensating photonic crystal fibre over the E+S+C+L+U wavelength bands. Optical Fiber Technology, 2014, 20, 527-532.	2.7	12
41	Polarization maintaining holey fibers for residual dispersion compensation over $S+C+L$ wavelength bands. Optik, 2014, 125, 911-915.	2.9	9
42	Polarization maintaining large nonlinear coefficient photonic crystal fibers using rotational hybrid cladding. Optik, 2014, 125, 1011-1015.	2.9	17
43	Design of single polarization single mode dispersion compensating photonic crystal fiber. Optik, 2014, 125, 4313-4318.	2.9	2
44	Proposal for highly birefringent broadband dispersion compensating octagonal photonic crystal fiber. Optical Fiber Technology, 2013, 19, 461-467.	2.7	95
45	Highly nonlinear polarization maintaining two zero dispersion spiral photonic crystal fiber using artificial defects. Optical Fiber Technology, 2013, 19, 539-542.	2.7	19
46	Broadband dispersion compensation of conventional single mode fibers using microstructure optical fibers. Optik, 2013, 124, 3851-3855.	2.9	37
47	Tailoring polarization maintaining broadband residual dispersion compensating octagonal photonic crystal fibers. Optical Engineering, 2013, 52, 116111.	1.0	8
48	Highly nonlinear polarization maintaining dispersion compensating fiber for high-speed transmission system. Optical Engineering, 2013, 52, 116112.	1.0	6
49	Relative dispersion slope matched dispersion compensating highly birefringent spiral microstructure optical fibers using defected core. Optical Engineering, 2013, 52, 096110.	1.0	18
50	Design of highly birefringent holey fibers with near-zero ultra-flattened chromatic dispersion and ultralow confinement loss. Journal of Microwaves, Optoelectronics and Electromagnetic Applications, 2013, 12, 102-110.	0.7	7