
## Stephen R Springston

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7257053/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Reconciling Observed and Predicted Tropical Rainforest OH Concentrations. Journal of Geophysical<br>Research D: Atmospheres, 2022, 127, .                                                                                                                  | 1.2 | 6         |
| 2  | Aircraft measurements of aerosol and trace gas chemistry in the eastern North Atlantic. Atmospheric<br>Chemistry and Physics, 2021, 21, 7983-8002.                                                                                                         | 1.9 | 19        |
| 3  | Dilution impacts on smoke aging: evidence in Biomass Burning Observation Project (BBOP) data.<br>Atmospheric Chemistry and Physics, 2021, 21, 6839-6855.                                                                                                   | 1.9 | 23        |
| 4  | Vertical profiles of trace gas and aerosol properties over the eastern North Atlantic: variations with season and synoptic condition. Atmospheric Chemistry and Physics, 2021, 21, 11079-11098.                                                            | 1.9 | 14        |
| 5  | Comparison of aircraft measurements during GoAmazon2014/5 and ACRIDICON-CHUVA. Atmospheric<br>Measurement Techniques, 2020, 13, 661-684.                                                                                                                   | 1.2 | 12        |
| 6  | Efficient Nighttime Biogenic SOA Formation in a Polluted Residual Layer. Journal of Geophysical<br>Research D: Atmospheres, 2020, 125, e2019JD031583.                                                                                                      | 1.2 | 14        |
| 7  | Rapid evolution of aerosol particles and their optical properties downwind of wildfires in the western US. Atmospheric Chemistry and Physics, 2020, 20, 13319-13341.                                                                                       | 1.9 | 44        |
| 8  | Identifying a regional aerosol baseline in the eastern North Atlantic using collocated measurements<br>and a mathematical algorithm to mask high-submicron-number-concentration aerosol events.<br>Atmospheric Chemistry and Physics, 2020, 20, 7553-7573. | 1.9 | 7         |
| 9  | Overview of the HI-SCALE Field Campaign: A New Perspective on Shallow Convective Clouds. Bulletin of the American Meteorological Society, 2019, 100, 821-840.                                                                                              | 1.7 | 44        |
| 10 | Contributions of biomass-burning, urban, and biogenic emissions to the concentrations and<br>light-absorbing properties of particulate matter in central Amazonia during the dry season.<br>Atmospheric Chemistry and Physics, 2019, 19, 7973-8001.        | 1.9 | 36        |
| 11 | Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest. Nature<br>Communications, 2019, 10, 1046.                                                                                                                       | 5.8 | 131       |
| 12 | Spherical tarball particles form through rapid chemical and physical changes of organic matter in<br>biomass-burning smoke. Proceedings of the National Academy of Sciences of the United States of<br>America, 2019, 116, 19336-19341.                    | 3.3 | 70        |
| 13 | Atmospheric Radiation Measurement (ARM) Aerosol Observing Systems (AOS) for Surface-Based In Situ<br>Atmospheric Aerosol and Trace Gas Measurements. Journal of Atmospheric and Oceanic Technology,<br>2019, 36, 2429-2447.                                | 0.5 | 19        |
| 14 | Secondary organic aerosol formation from ambient air in an oxidation flow reactor in central<br>Amazonia. Atmospheric Chemistry and Physics, 2018, 18, 467-493.                                                                                            | 1.9 | 63        |
| 15 | Isoprene photo-oxidation products quantify the effect of pollution on hydroxyl radicals over<br>Amazonia. Science Advances, 2018, 4, eaar2547.                                                                                                             | 4.7 | 28        |
| 16 | Marine boundary layer aerosol in the eastern North Atlantic: seasonal variations and key controlling processes. Atmospheric Chemistry and Physics, 2018, 18, 17615-17635.                                                                                  | 1.9 | 51        |
| 17 | High summertime aerosol organic functional group concentrations from marine and seabird sources at Ross Island, Antarctica, during AWARE. Atmospheric Chemistry and Physics, 2018, 18, 8571-8587.                                                          | 1.9 | 31        |
| 18 | The Ascension Island Boundary Layer in the Remote Southeast Atlantic is Often Smoky. Geophysical<br>Research Letters, 2018, 45, 4456-4465.                                                                                                                 | 1.5 | 77        |

| #  | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Aircraft observations of the chemical composition and aging of aerosol in the Manaus urban plume during GoAmazon 2014/5. Atmospheric Chemistry and Physics, 2018, 18, 10773-10797.                                                                | 1.9  | 32        |
| 20 | Formation and evolution of tar balls from northwestern US wildfires. Atmospheric Chemistry and Physics, 2018, 18, 11289-11301.                                                                                                                    | 1.9  | 67        |
| 21 | Airborne measurements of western U.S. wildfire emissions: Comparison with prescribed burning and air quality implications. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6108-6129.                                                  | 1.2  | 184       |
| 22 | Influence of urban pollution on the production of organic particulate matter from isoprene epoxydiols in central Amazonia. Atmospheric Chemistry and Physics, 2017, 17, 6611-6629.                                                                | 1.9  | 45        |
| 23 | CCN activity and organic hygroscopicity of aerosols downwind of an urban region in central<br>Amazonia: seasonal and diel variations and impact of anthropogenic emissions. Atmospheric Chemistry<br>and Physics, 2017, 17, 11779-11801.          | 1.9  | 71        |
| 24 | Tropospheric Ozone Assessment Report: Database and metrics data of global surface ozone observations. Elementa, 2017, 5, .                                                                                                                        | 1.1  | 172       |
| 25 | Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign. Environmental Science & amp; Technology, 2016, 50, 8613-8622.                                                            | 4.6  | 89        |
| 26 | Influences of upwind emission sources and atmospheric processing on aerosol chemistry and<br>properties at a rural location in the Northeastern U.S Journal of Geophysical Research D:<br>Atmospheres, 2016, 121, 6049-6065.                      | 1.2  | 35        |
| 27 | Model representations of aerosol layers transported from North America over the Atlantic Ocean<br>during the Two olumn Aerosol Project. Journal of Geophysical Research D: Atmospheres, 2016, 121,<br>9814-9848.                                  | 1.2  | 15        |
| 28 | Isoprene photochemistry over the Amazon rainforest. Proceedings of the National Academy of<br>Sciences of the United States of America, 2016, 113, 6125-6130.                                                                                     | 3.3  | 85        |
| 29 | The Two olumn Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth. Journal of Geophysical Research D: Atmospheres, 2016, 121, 336-361.                                                               | 1.2  | 33        |
| 30 | Amazon boundary layer aerosol concentration sustained by vertical transport during rainfall.<br>Nature, 2016, 539, 416-419.                                                                                                                       | 13.7 | 112       |
| 31 | Deriving brown carbon from multiwavelength absorption measurements: method and application to<br>AERONET and Aethalometer observations. Atmospheric Chemistry and Physics, 2016, 16, 12733-12752.                                                 | 1.9  | 123       |
| 32 | What do correlations tell us about anthropogenic–biogenic interactions and SOA formation in the Sacramento plume during CARES?. Atmospheric Chemistry and Physics, 2016, 16, 1729-1746.                                                           | 1.9  | 6         |
| 33 | Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project. Journal of Geophysical Research D: Atmospheres, 2015, 120, 5047-5069.                | 1.2  | 50        |
| 34 | Subâ€3 nm particles observed at the coastal and continental sites in the United States. Journal of<br>Geophysical Research D: Atmospheres, 2014, 119, 860-879.                                                                                    | 1.2  | 26        |
| 35 | Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to<br>emissions and long-range transport during the 2010 CalNex and CARES campaigns. Atmospheric<br>Chemistry and Physics, 2014, 14, 10013-10060. | 1.9  | 62        |
| 36 | Chemical composition and sources of coastal marine aerosol particles during the 2008 VOCALS-REx campaign. Atmospheric Chemistry and Physics, 2014, 14, 5057-5072.                                                                                 | 1.9  | 9         |

| #  | Article                                                                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Sub-3 nm particle observations in the atmosphere of two sites in Eastern United States. , 2013, , .                                                                                                                                                                                                          |     | 1         |
| 38 | Enhanced SOA formation from mixed anthropogenic and biogenic emissions during the CARES campaign. Atmospheric Chemistry and Physics, 2013, 13, 2091-2113.                                                                                                                                                    | 1.9 | 146       |
| 39 | Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES). Atmospheric Chemistry and Physics, 2012, 12, 1759-1783.                                                                                                                           | 1.9 | 67        |
| 40 | Aerosol concentration and size distribution measured below, in, and above cloud from the DOE G-1 during VOCALS-REx. Atmospheric Chemistry and Physics, 2012, 12, 207-223.                                                                                                                                    | 1.9 | 65        |
| 41 | Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx. Atmospheric Chemistry and Physics, 2012, 12, 3045-3064.                                                                                                                                            | 1.9 | 77        |
| 42 | Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES). Atmospheric Chemistry and Physics, 2012, 12, 7647-7687.                                                                                                                                                                      | 1.9 | 94        |
| 43 | Observations of the first aerosol indirect effect in shallow cumuli. Geophysical Research Letters, 2011, 38, n/a-n/a.                                                                                                                                                                                        | 1.5 | 43        |
| 44 | Measurements of volatile organic compounds at a suburban ground site (T1) in Mexico City during the MILAGRO 2006 campaign: measurement comparison, emission ratios, and source attribution.<br>Atmospheric Chemistry and Physics, 2011, 11, 2399-2421.                                                       | 1.9 | 127       |
| 45 | South East Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx.<br>Atmospheric Chemistry and Physics, 2011, 11, 5237-5262.                                                                                                                                                 | 1.9 | 119       |
| 46 | The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations. Atmospheric Chemistry and Physics, 2011, 11, 627-654.                                                                                                                                  | 1.9 | 272       |
| 47 | Chemical evolution of volatile organic compounds in the outflow of the Mexico City Metropolitan area. Atmospheric Chemistry and Physics, 2010, 10, 2353-2375.                                                                                                                                                | 1.9 | 131       |
| 48 | Nighttime chemical evolution of aerosol and trace gases in a power plant plume: Implications for secondary organic nitrate and organosulfate aerosol formation, NO <sub>3</sub> radical chemistry, and N <sub>2</sub> O <sub>5</sub> heterogeneous hydrolysis. Journal of Geophysical Research, 2010, 115, . | 3.3 | 67        |
| 49 | Overview of the Cumulus Humilis Aerosol Processing Study. Bulletin of the American Meteorological<br>Society, 2009, 90, 1653-1668.                                                                                                                                                                           | 1.7 | 33        |
| 50 | The time evolution of aerosol size distribution over the Mexico City plateau. Atmospheric Chemistry and Physics, 2009, 9, 4261-4278.                                                                                                                                                                         | 1.9 | 60        |
| 51 | Aircraft and ground-based measurements of hydroperoxides during the 2006 MILAGRO field campaign.<br>Atmospheric Chemistry and Physics, 2008, 8, 7619-7636.                                                                                                                                                   | 1.9 | 26        |
| 52 | The time evolution of aerosol composition over the Mexico City plateau. Atmospheric Chemistry and Physics, 2008, 8, 1559-1575.                                                                                                                                                                               | 1.9 | 250       |
| 53 | The T1-T2 study: evolution of aerosol properties downwind of Mexico City. Atmospheric Chemistry and Physics, 2007, 7, 1585-1598.                                                                                                                                                                             | 1.9 | 124       |
| 54 | Noise Characteristics of an Instrumental Particle Absorbance Technique. Aerosol Science and Technology, 2007, 41, 1110-1116.                                                                                                                                                                                 | 1.5 | 27        |

| #  | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Aircraft observations of aerosol composition and ageing in New England and Mid-Atlantic States<br>during the summer 2002 New England Air Quality Study field campaign. Journal of Geophysical<br>Research, 2007, 112, . | 3.3 | 87        |
| 56 | Observation of ambient aerosol particle growth due to in loud processes within boundary layers.<br>Journal of Geophysical Research, 2007, 112, .                                                                        | 3.3 | 10        |
| 57 | Trace-gas mixing in isolated urban boundary layers: Results from the 2001 Phoenix sunrise experiment.<br>Atmospheric Environment, 2006, 40, 50-57.                                                                      | 1.9 | 4         |
| 58 | Chemical evolution of an isolated power plant plume during the TexAQS 2000 study. Atmospheric Environment, 2005, 39, 3431-3443.                                                                                         | 1.9 | 32        |
| 59 | A comparative study of ozone production in five U.S. metropolitan areas. Journal of Geophysical Research, 2005, 110, .                                                                                                  | 3.3 | 107       |
| 60 | Ground-based and aircraft measurements of trace gases in Phoenix, Arizona (1998). Atmospheric<br>Environment, 2004, 38, 4941-4956.                                                                                      | 1.9 | 12        |
| 61 | Origin and properties of plumes of high ozone observed during the Texas 2000 Air Quality Study<br>(TexAQS 2000). Journal of Geophysical Research, 2004, 109, .                                                          | 3.3 | 61        |
| 62 | An ozone episode in the Philadelphia metropolitan area. Journal of Geophysical Research, 2004, 109, .                                                                                                                   | 3.3 | 10        |
| 63 | Photochemical age determinations in the Phoenix metropolitan area. Journal of Geophysical Research, 2003, 108, n/a-n/a.                                                                                                 | 3.3 | 60        |
| 64 | Ozone production efficiency and NOxdepletion in an urban plume: Interpretation of field<br>observations and implications for evaluating O3-NOx-VOC sensitivity. Journal of Geophysical<br>Research, 2003, 108, .        | 3.3 | 81        |
| 65 | Correction to "Ozone production rate and hydrocarbon reactivity in 5 urban areas: A cause of high<br>ozone concentration in Houstonâ€: Geophysical Research Letters, 2003, 30, .                                        | 1.5 | 30        |
| 66 | A comparative study of O3formation in the Houston urban and industrial plumes during the 2000<br>Texas Air Quality Study. Journal of Geophysical Research, 2003, 108, .                                                 | 3.3 | 77        |
| 67 | Quantitative Analysis of Hydroperoxyl Radical Using Flow Injection Analysis with Chemiluminescence<br>Detection. Analytical Chemistry, 2003, 75, 4696-4700.                                                             | 3.2 | 29        |
| 68 | Ozone production efficiency in an urban area. Journal of Geophysical Research, 2002, 107, ACH 23-1-ACH 23-12.                                                                                                           | 3.3 | 104       |
| 69 | Ozone production rate and hydrocarbon reactivity in 5 urban areas: A cause of high ozone concentration in Houston. Geophysical Research Letters, 2002, 29, 105-1-105-4.                                                 | 1.5 | 160       |
| 70 | Sensitivity of ozone production rate to ozone precursors. Geophysical Research Letters, 2001, 28, 2903-2906.                                                                                                            | 1.5 | 60        |
| 71 | Ozone production in the New York City urban plume. Journal of Geophysical Research, 2000, 105, 14495-14511.                                                                                                             | 3.3 | 93        |
| 72 | Analysis of O3formation during a stagnation episode in central Tennessee in summer 1995. Journal of<br>Geophysical Research, 2000, 105, 9107-9119.                                                                      | 3.3 | 37        |

STEPHEN R SPRINGSTON

| #  | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | NOylifetimes and O3production efficiencies in urban and power plant plumes: Analysis of field data.<br>Journal of Geophysical Research, 2000, 105, 9165-9176.                                                          | 3.3 | 52        |
| 74 | Analysis of the processing of Nashville urban emissions on July 3 and July 18, 1995. Journal of<br>Geophysical Research, 2000, 105, 9155-9164.                                                                         | 3.3 | 37        |
| 75 | Ozone production and transport near Nashville, Tennessee: Results from the 1994 study at New<br>Hendersonville. Journal of Geophysical Research, 2000, 105, 9137-9153.                                                 | 3.3 | 26        |
| 76 | Photochemistry of O3and related compounds over southern Nova Scotia. Journal of Geophysical Research, 1998, 103, 13519-13529.                                                                                          | 3.3 | 11        |
| 77 | Formation mechanisms and chemical characteristics of elevated photochemical layers over the northeast United States. Journal of Geophysical Research, 1998, 103, 10631-10647.                                          | 3.3 | 29        |
| 78 | Intercomparison of ground-based NOymeasurement techniques. Journal of Geophysical Research, 1998,<br>103, 22261-22280.                                                                                                 | 3.3 | 109       |
| 79 | Atmospheric chemistry and distribution of formaldehyde and several multioxygenated carbonyl compounds during the 1995 Nashville/Middle Tennessee Ozone Study. Journal of Geophysical Research, 1998, 103, 22449-22462. | 3.3 | 146       |
| 80 | Measurements of peroxides and related species during the 1995 summer intensive of the Southern<br>Oxidants Study in Nashville, Tennessee. Journal of Geophysical Research, 1998, 103, 22361-22373.                     | 3.3 | 49        |
| 81 | Characterization of the Nashville urban plume on July 3 and July 18, 1995. Journal of Geophysical Research, 1998, 103, 28129-28148.                                                                                    | 3.3 | 78        |
| 82 | Dependence of ozone production on NO and hydrocarbons in the troposphere. Geophysical Research<br>Letters, 1997, 24, 2299-2302.                                                                                        | 1.5 | 147       |
| 83 | Transport of ozone and sulfur to the North Atlantic atmosphere during the North Atlantic Regional<br>Experiment. Journal of Geophysical Research, 1996, 101, 29091-29104.                                              | 3.3 | 32        |
| 84 | Measurement of O3and related compounds over southern Nova Scotia: 2. Photochemical age and vertical transport. Journal of Geophysical Research, 1996, 101, 29061-29074.                                                | 3.3 | 10        |
| 85 | Measurement of O3and related compounds over southern Nova Scotia: 1. Vertical distributions.<br>Journal of Geophysical Research, 1996, 101, 29043-29060.                                                               | 3.3 | 20        |
| 86 | Peroxy radical concentration and ozone formation rate at a rural site in the southeastern United States. Journal of Geophysical Research, 1995, 100, 7263-7273.                                                        | 3.3 | 81        |
| 87 | Ozone formation at a rural site in the southeastern United States. Journal of Geophysical Research, 1994, 99, 3469.                                                                                                    | 3.3 | 199       |
| 88 | Tropospheric Sampling with Aircraft. Advances in Chemistry Series, 1993, , 101-132.                                                                                                                                    | 0.6 | 2         |
| 89 | Cryogenic-focusing, ohmically heated on-column trap for capillary gas chromatography. Journal of<br>Chromatography A, 1990, 517, 67-75.                                                                                | 1.8 | 10        |
| 90 | Non-extractable stationary phases for gas chromatography cross-linked by exposure to<br>low-temperature plasmas. Journal of Chromatography A, 1989, 473, 79-92.                                                        | 1.8 | 4         |

STEPHEN R SPRINGSTON

| #   | Article                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Capillary gas chromatographic separation of alkyl nitrates and peroxycarboxylic nitric anhydrides.<br>Analytical Chemistry, 1989, 61, 771-772.                        | 3.2 | 29        |
| 92  | Continuous particle fractionation based on gravitational sedimentation in split-flow thin cells.<br>Analytical Chemistry, 1987, 59, 344-350.                          | 3.2 | 104       |
| 93  | Stationary-phase phenomena in capillary supercritical fluid chromatography. Analytical Chemistry, 1986, 58, 997-1002.                                                 | 3.2 | 52        |
| 94  | Coiling-induced secondary flow in capillary supercritical fluid chromatography. Analytical<br>Chemistry, 1986, 58, 2699-2704.                                         | 3.2 | 13        |
| 95  | Mobile-phase solute mass transfer in supercritical fluid chromatography. Analytical Chemistry, 1984,<br>56, 1762-1766.                                                | 3.2 | 35        |
| 96  | Immobilization of silicone stationary phases for capillary chromatography through the action of azoisobutyronitrile. Journal of Chromatography A, 1983, 267, 395-398. | 1.8 | 12        |
| 97  | Fundamentals of column performance in supercritical fluid chromatography. Journal of Chromatography A, 1983, 279, 417-422.                                            | 1.8 | 23        |
| 98  | Instrumental aspects of capillary supercritical fluid chromatography. Analytical Chemistry, 1982, 54, 1090-1093.                                                      | 3.2 | 139       |
| 99  | Capillary Supercritical Fluid Chromatography. Analytical Chemistry, 1981, 53, 407A-414A.                                                                              | 3.2 | 135       |
| 100 | Kinetic optimization of capillary supercritical fluid chromatography using carbon dioxide as the mobile phase. Chromatographia, 1981, 14, 679-684.                    | 0.7 | 39        |