Maristela Delgado Orellana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7257025/publications.pdf

Version: 2024-02-01

40 papers 1,613 citations

471509 17 h-index 35 g-index

41 all docs

41 docs citations

41 times ranked

2714 citing authors

#	Article	IF	CITATIONS
1	Overexpression of miR-200b-3p in Menstrual Blood-Derived Mesenchymal Stem Cells from Endometriosis Women. Reproductive Sciences, 2022, 29, 734-742.	2.5	7
2	Generation of hematopoietic stem/progenitor cells with sickle cell mutation from induced pluripotent stem cell in serum-free system. Hematology, Transfusion and Cell Therapy, 2021, 43, 156-164.	0.2	4
3	Hypoxia priming improves in vitro angiogenic properties of umbilical cord derived-mesenchymal stromal cells expanded in stirred-tank bioreactor. Biochemical Engineering Journal, 2021, 168, 107949.	3.6	9
4	Viability of Chimeric Antigen Receptor T Cell Therapy in Latin America. Blood, 2021, 138, 4843-4843.	1.4	2
5	Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular Consensus on genetically modified cells. VI: Accreditation process. Hematology, Transfusion and Cell Therapy, 2021, 43, S42-S45.	0.2	1
6	Analysis of Adipose-Derived Stem Cells from Different Donor Areas and Their Influence on Fibroblasts In Vitro. Aesthetic Plastic Surgery, 2020, 44, 971-978.	0.9	6
7	Mesenchymal stromal cells administration for osteonecrosis of the jaw caused by bisphosphonate: report of two cases. Acta Oncol \tilde{A}^3 gica, 2020, 59, 789-792.	1.8	10
8	Short Communication: Human Bone Marrow Stromal Cells Exhibit Immunosuppressive Effects on Human T Lymphotropic Virus Type 1 T Lymphocyte from Infected Individuals. AIDS Research and Human Retroviruses, 2019, 35, 164-168.	1.1	2
9	Beneficial Role of Low-Intensity Laser Irradiation on Neural \hat{l}^2 -tubulin III Protein Expression in Human Bone Marrow Multipotent Mesenchymal Stromal Cells. Stem Cell Reviews and Reports, 2018, 14, 585-598.	5.6	4
10	Technologies for large-scale umbilical cord-derived MSC expansion: Experimental performance and cost of goods analysis. Biochemical Engineering Journal, 2018, 135, 36-48.	3.6	55
11	Detection of HTLV-1 proviral DNA in BM mononuclear cells and cultured mesenchymal stromal cells isolated from patients with HTLV-1 infection. Virology, 2018, 519, 145-155.	2.4	O
12	Expansion strategies for human mesenchymal stromal cells culture under xenoâ€free conditions. Biotechnology Progress, 2017, 33, 1358-1367.	2.6	46
13	Characterization of Human AB Serum for Mesenchymal Stromal Cell Expansion. Transfusion Medicine and Hemotherapy, 2017, 44, 11-21.	1.6	20
14	Mesenchymal stromal cell infusion to treat steroid-refractory acute GvHD III/IV after hematopoietic stem cell transplantation. Bone Marrow Transplantation, 2017, 52, 859-862.	2.4	87
15	Proteomic Analysis of Mesenchymal Stem Cells. Methods in Molecular Biology, 2016, 1416, 509-519.	0.9	4
16	DSP30 enhances the immunosuppressive properties of mesenchymal stromal cells and protects their suppressive potential from lipopolysaccharide effects: A potential role of adenosine. Cytotherapy, 2016, 18, 846-859.	0.7	18
17	TNF-alpha and Notch signaling regulates the expression of HOXB4 and GATA3 during early T lymphopoiesis. In Vitro Cellular and Developmental Biology - Animal, 2016, 52, 920-934.	1.5	4
18	Human bone marrow mesenchymal stromal cells exhibit suppressive effects on lymphocytes derived from HTLV-1 infected individuals. Retrovirology, 2015, 12, .	2.0	0

#	Article	IF	Citations
19	Efficient recovery of undifferentiated human embryonic stem cell cryopreserved with hydroxyethyl starch, dimethyl sulphoxide and serum replacement. Cryobiology, 2015, 71, 151-160.	0.7	11
20	OP9 Stromal Cells Proteins Involved in Hematoendothelial Differentiation from Human Embryonic Stem Cells. Cellular Reprogramming, 2015, 17, 338-346.	0.9	11
21	Intravenous infusion of allogeneic mesenchymal stromal cells in refractory or relapsed aplastic anemia. Cytotherapy, 2015, 17, 1696-1705.	0.7	25
22	HTLV-1 infects human mesenchymal stromal cell in vitro and modifies their phenotypic characteristics. Virology, 2014, 449, 190-199.	2.4	10
23	Growth and functional harvesting of human mesenchymal stromal cells cultured on a microcarrierâ€based system. Biotechnology Progress, 2014, 30, 889-895.	2.6	55
24	Maturation of human iDCs by IL-18 plus PGE2, but not by each stimulus alone, induced migration toward CCL21 and the secretion of IL-12 and IFN- \hat{I}^3 . Immunobiology, 2013, 218, 238-244.	1.9	0
25	Efficient expansion of mesenchymal stromal cells in a disposable fixed bed culture system. Biotechnology Progress, 2013, 29, 568-572.	2.6	33
26	TLR9 Priming Promotes Proliferation Of Mesenchymal Stem Cells and Restores The Immunosuppressive Activity Impaired By TLR4 Priming: Potential Involvement Of Non-Canonical NF-Kb Signaling. Blood, 2013, 122, 2458-2458.	1.4	2
27	A quantitative proteomic and transcriptomic comparison of human mesenchymal stem cells from bone marrow and umbilical cord vein. Proteomics, 2012, 12, 2607-2617.	2.2	28
28	Cryopreservation of umbilical cord mesenchymal cells in xenofree conditions. Cytotherapy, 2012, 14, 694-700.	0.7	39
29	Mesenchymal stem cells promote the sustained expression of CD69 on activated T lymphocytes: roles of canonical and nonâ€canonical NFâ€₽B signalling. Journal of Cellular and Molecular Medicine, 2012, 16, 1232-1244.	3.6	44
30	Pluripotent Reprogramming of Fibroblasts by Lentiviralmediated Insertion of SOX2, C-MYC, and TCL-1A. Stem Cells and Development, 2011, 20, 169-180.	2.1	32
31	Human hepatic stellate cell line (LX-2) exhibits characteristics of bone marrow-derived mesenchymal stem cells. Experimental and Molecular Pathology, 2011, 91, 664-672.	2.1	48
32	Effects of high-dose chemotherapy on bone marrow multipotent mesenchymal stromal cells isolated from lymphoma patients. Experimental Hematology, 2010, 38, 292-300.e4.	0.4	29
33	Increased Levels of NOTCH1, NF-κB, and Other Interconnected Transcription Factors Characterize Primitive Sets of Hematopoietic Stem Cells. Stem Cells and Development, 2010, 19, 321-332.	2.1	15
34	Multipotent mesenchymal stromal cells obtained from diverse human tissues share functional properties and gene-expression profile with CD146+ perivascular cells and fibroblasts. Experimental Hematology, 2008, 36, 642-654.	0.4	541
35	NFκB-Mediated Up-Regulation of Transcription Factors Related to More Primitive State of Hematopoietic Progenitor Cells Blood, 2007, 110, 1246-1246.	1.4	O
36	Expansion and Multipotencial Differentiation of Mesenchymal Stem Cells Isolated from Patients after High Dose Chemotherapy Blood, 2006, 108, 4259-4259.	1.4	0

#	Article	IF	CITATIONS
37	Mesenchymal stem cells can be obtained from the human saphena vein. Experimental Cell Research, 2005, 309, 340-344.	2.6	74
38	Mesenchymal Stem Cells, Fibroblasts and Pericytes: Different Functional States of the Same Cell? Blood, 2005, 106, 4310-4310.	1.4	4
39	Comparison of Gene Expression of Umbilical Cord Vein and Bone Marrow–Derived Mesenchymal Stem Cells. Stem Cells, 2004, 22, 1263-1278.	3.2	295
40	SDF-1 gene polymorphisms and syncytia induction in Brazilian HIV-1 infected individuals. Microbial Pathogenesis, 2003, 35, 31-34.	2.9	38