
Jonathan Woon Chung Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7256935/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of bioflocculant from <i>Klebsiella pneumoniae</i> : evaluation of fish waste extract as substrate and flocculation performance. Environmental Technology (United Kingdom), 2023, 44, 4046-4059.	1.2	3
2	Effect of biochar combined with a biotrickling filter on deodorization, nitrogen retention, and microbial community succession during chicken manure composting. Bioresource Technology, 2022, 343, 126137.	4.8	40
3	Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. Bioresource Technology, 2022, 343, 126059.	4.8	82
4	Two-phase anaerobic digestion of food waste: Effect of semi-continuous feeding on acidogenesis and methane production. Bioresource Technology, 2022, 346, 126396.	4.8	20
5	Evaluations of biochar amendment on anaerobic co-digestion of pig manure and sewage sludge: waste-to-methane conversion, microbial community, and antibiotic resistance genes. Bioresource Technology, 2022, 346, 126400.	4.8	15
6	Bioconversion of organic wastes into value-added products: A review. Bioresource Technology, 2022, 344, 126398.	4.8	55
7	Trends in mitigation of industrial waste: Global health hazards, environmental implications and waste derived economy for environmental sustainability. Science of the Total Environment, 2022, 811, 152357.	3.9	60
8	Sustainable utilization of food waste for bioenergy production: A step towards circular bioeconomy. International Journal of Food Microbiology, 2022, 365, 109538.	2.1	49
9	Assessing simultaneous immobilization of lead and improvement of phosphorus availability through application of phosphorus-rich biochar in a contaminated soil: A pot experiment. Chemosphere, 2022, 296, 133891.	4.2	17
10	Microbiological insights into anaerobic digestion for biogas, hydrogen or volatile fatty acids (VFAs): a review. Bioengineered, 2022, 13, 6521-6557.	1.4	107
11	Microbial electrolysis: a promising approach for treatment and resource recovery from industrial wastewater. Bioengineered, 2022, 13, 8115-8134.	1.4	23
12	Mechanisms of indoor mold survival under moisture dynamics, a special water treatment approach within the indoor context. Chemosphere, 2022, 302, 134748.	4.2	4
13	Temperature versus Relative Humidity: Which Is More Important for Indoor Mold Prevention?. Journal of Fungi (Basel, Switzerland), 2022, 8, 696.	1.5	5
14	Bio-based rhamnolipids production and recovery from waste streams: Status and perspectives. Bioresource Technology, 2021, 319, 124213.	4.8	52
15	Food waste valorization: Energy production using novel integrated systems. Bioresource Technology, 2021, 322, 124538.	4.8	36
16	Iron-modified biochar and water management regime-induced changes in plant growth, enzyme activities, and phytoavailability of arsenic, cadmium and lead in a paddy soil. Journal of Hazardous Materials, 2021, 407, 124344.	6.5	150
17	Food Waste Digestate-Based Biorefinery Approach for Rhamnolipids Production: A Techno-Economic Analysis. Sustainable Chemistry, 2021, 2, 237-253.	2.2	12
18	Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresource Technology, 2021, 325, 124684.	4.8	166

JONATHAN WOON CHUNG

#	Article	IF	CITATIONS
19	A Review of the Use of Carbon Nanotubes and Graphene-Based Sensors for the Detection of Aflatoxin M1 Compounds in Milk. Sensors, 2021, 21, 3602.	2.1	17
20	A critical review on various feedstocks as sustainable substrates for biosurfactants production: a way towards cleaner production. Microbial Cell Factories, 2021, 20, 120.	1.9	124
21	Biocatalytic remediation of industrial pollutants for environmental sustainability: Research needs and opportunities. Chemosphere, 2021, 272, 129936.	4.2	55
22	Biochar porosity: a nature-based dependent parameter to deliver microorganisms to soils for land restoration. Environmental Science and Pollution Research, 2021, 28, 46894-46909.	2.7	15
23	Food waste and sewage sludge co-digestion amended with different biochars: VFA kinetics, methane yield and digestate quality assessment. Journal of Environmental Management, 2021, 290, 112457.	3.8	36
24	A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. Bioresource Technology, 2021, 334, 125032.	4.8	106
25	Optimization of water replacement during leachate recirculation for two-phase food waste anaerobic digestion system with off-gas diversion. Bioresource Technology, 2021, 335, 125234.	4.8	21
26	Promoting anaerobic co-digestion of sewage sludge and food waste with different types of conductive materials: Performance, stability, and underlying mechanism. Bioresource Technology, 2021, 337, 125384.	4.8	59
27	Anaerobic digestion beyond biogas. Bioresource Technology, 2021, 337, 125378.	4.8	33
28	A review on integrated approaches for municipal solid waste for environmental and economical relevance: Monitoring tools, technologies, and strategic innovations. Bioresource Technology, 2021, 342, 125982.	4.8	68
29	Biodegradation kinetics of ammonium enriched food waste digestate compost with biochar amendment. Bioresource Technology, 2021, 341, 125871.	4.8	46
30	Food waste digestate composting: Feedstock optimization with sawdust and mature compost. Bioresource Technology, 2021, 341, 125759.	4.8	81
31	Recovery of resources from industrial wastewater employing electrochemical technologies: status, advancements and perspectives. Bioengineered, 2021, 12, 4697-4718.	1.4	43
32	The role of oxidative stress in the growth of the indoor moldCladosporium cladosporioidesunder water dynamics. Indoor Air, 2020, 30, 117-125.	2.0	8
33	Food waste leachate treatment using an Upflow Anaerobic Sludge Bed (UASB): Effect of conductive material dosage under low and high organic loads. Bioresource Technology, 2020, 304, 122738.	4.8	55
34	Bio-hydrogen and methane production from two-phase anaerobic digestion of food waste under the scheme of acidogenic off-gas reuse. Bioresource Technology, 2020, 297, 122400.	4.8	36
35	Odor emission and microbial community succession during biogas residue composting covered with a molecular membrane. Bioresource Technology, 2020, 297, 122518.	4.8	93
36	Enhancing the Performance and Stability of the Co-anaerobic Digestion of Municipal Sludge and Food Waste by Granular Activated Carbon Dosing. Energy & Fuels, 2020, 34, 16284-16293.	2.5	15

Jonathan Woon Chung

#	Article	IF	CITATIONS
37	Value Addition of Anaerobic Digestate From Biowaste: Thinking Beyond Agriculture. Current Sustainable/Renewable Energy Reports, 2020, 7, 48-55.	1.2	17
38	Optimizing extraction procedures for better removal of potentially toxic elements during EDTA-assisted soil washing. Journal of Soils and Sediments, 2020, 20, 3417-3426.	1.5	12
39	Current challenges for shaping the sustainable and mold-free hygienic indoor environment in humid regions. Letters in Applied Microbiology, 2020, 70, 396-406.	1.0	6
40	Enhanced volatile fatty acid degradation and methane production efficiency by biochar addition in food waste-sludge co-digestion: A step towards increased organic loading efficiency in co-digestion. Bioresource Technology, 2020, 308, 123250.	4.8	81
41	IoT-Based Laser-Inscribed Sensors for Detection of Sulfate in Water Bodies. IEEE Access, 2020, 8, 228879-228890.	2.6	12
42	A critical review: emerging bioeconomy and waste-to-energy technologies for sustainable municipal solid waste management. Waste Disposal & Sustainable Energy, 2019, 1, 151-167.	1.1	118
43	Crucifera sulforaphane (SFN) inhibits the growth of nasopharyngeal carcinoma through DNA methyltransferase 1 (DNMT1)/Wnt inhibitory factor 1 (WIF1) axis. Phytomedicine, 2019, 63, 153058.	2.3	19
44	Enhanced food waste degradation in integrated two-phase anaerobic digestion: Effect of leachate recirculation ratio. Bioresource Technology, 2019, 291, 121813.	4.8	46
45	Integrated food waste and sewage treatment – A better approach than conventional food waste-sludge co-digestion for higher energy recovery via anaerobic digestion. Bioresource Technology, 2019, 289, 121698.	4.8	57
46	A mini-review on the metabolic pathways of food waste two-phase anaerobic digestion system. Waste Management and Research, 2019, 37, 333-346.	2.2	44
47	Effects of different thermal pretreatments on the biodegradability and bioaccessibility of sewage sludge. Waste Management, 2019, 94, 68-76.	3.7	39
48	Co-digestion of food waste and sewage sludge for methane production: Current status and perspective. Bioresource Technology, 2018, 265, 519-531.	4.8	235
49	Lipid accumulation potential of oleaginous yeasts: A comparative evaluation using food waste leachate as a substrate. Bioresource Technology, 2018, 248, 221-228.	4.8	46
50	Biodegradation of food waste using microbial cultures producing thermostable α-amylase and cellulase under different pH and temperature. Bioresource Technology, 2018, 248, 160-170.	4.8	89
51	Bio-degradation of oily food waste employing thermophilic bacterial strains. Bioresource Technology, 2018, 248, 141-147.	4.8	51
52	Enhanced volatile fatty acids production from anaerobic fermentation of food waste: A mini-review focusing on acidogenic metabolic pathways. Bioresource Technology, 2018, 248, 68-78.	4.8	455
53	Influence of lime and struvite on microbial community succession and odour emission during food waste composting. Bioresource Technology, 2018, 247, 652-659.	4.8	56
54	Chinese medicinal herbal residues as a bulking agent for food waste composting. Bioresource Technology, 2018, 249, 182-188.	4.8	103

Jonathan Woon Chung

#	Article	IF	CITATIONS
55	Pretreatment of food waste for methane and hydrogen recovery: A review. Bioresource Technology, 2018, 249, 1025-1039.	4.8	232
56	Evaluation of microbial dynamics during post-consumption food waste composting. Bioresource Technology, 2018, 251, 181-188.	4.8	40
57	Food waste treatment by anaerobic co-digestion with saline sludge and its implications for energy recovery in Hong Kong. Bioresource Technology, 2018, 268, 824-828.	4.8	32
58	Waste-to-biofuel: production of biobutanol from sago waste residues. Environmental Technology (United Kingdom), 2017, 38, 1725-1734.	1.2	20
59	Application of recombinant Pediococcus acidilactici BD16 (fcs +/ech +) for bioconversion of agrowaste to vanillin. Applied Microbiology and Biotechnology, 2017, 101, 5615-5626.	1.7	34
60	Critical evaluation of post-consumption food waste composting employing thermophilic bacterial consortium. Bioresource Technology, 2017, 245, 665-672.	4.8	42
61	Enhanced carboxylic acids production by decreasing hydrogen partial pressure during acidogenic fermentation of glucose. Bioresource Technology, 2017, 245, 44-51.	4.8	44
62	Influence of acidogenic headspace pressure on methane production under schematic of diversion of acidogenic off-gas to methanogenic reactor. Bioresource Technology, 2017, 245, 1000-1007.	4.8	21
63	Bioelectrohydrogenesis and inhibition of methanogenic activity in microbial electrolysis cells - A review. Biotechnology Advances, 2017, 35, 758-771.	6.0	63
64	Biological nutrient transformation during composting of pig manure and paper waste. Environmental Technology (United Kingdom), 2017, 38, 754-761.	1.2	25
65	Innovative method for increased methane recovery from two-phase anaerobic digestion of food waste through reutilization of acidogenic off-gas in methanogenic reactor. Bioresource Technology, 2016, 217, 3-9.	4.8	52
66	Influence of lime on struvite formation and nitrogen conservation during food waste composting. Bioresource Technology, 2016, 217, 227-232.	4.8	106
67	Sludge conditioning using biogenic flocculant produced by Acidithiobacillus ferrooxidans for enhancement in dewaterability. Bioresource Technology, 2016, 217, 179-185.	4.8	28
68	Improved dewatering of CEPT sludge by biogenic flocculant from Acidithiobacillus ferrooxidans. Water Science and Technology, 2016, 73, 843-848.	1.2	9
69	Ammonia-oxidizing bacterial communities and shaping factors with different Phanerochaete chrysosporium inoculation regimes during agricultural waste composting. RSC Advances, 2016, 6, 61473-61481.	1.7	14
70	Dewatering of saline sewage sludge using iron-oxidizing bacteria: Effect of substrate concentration. Bioresource Technology, 2016, 213, 31-38.	4.8	22
71	Fate of extracellular polymeric substances of anaerobically digested sewage sludge during pre-dewatering conditioning with Acidithiobacillus ferrooxidans culture. Bioresource Technology, 2016, 217, 173-178.	4.8	26
72	Assistant role of bioelectrode on methanogenic reactor under ammonia stress. Bioresource Technology, 2016, 217, 72-81.	4.8	33

JONATHAN WOON CHUNG

#	Article	IF	CITATIONS
73	Effect of Chinese medicinal herbal residues on microbial community succession and anti-pathogenic properties during co-composting with food waste. Bioresource Technology, 2016, 217, 190-199.	4.8	69
74	Co-composting of gelatin industry sludge combined with organic fraction of municipal solid waste and poultry waste employing zeolite mixed with enriched nitrifying bacterial consortium. Bioresource Technology, 2016, 213, 181-189.	4.8	167
75	Microbial biodegradation of proteinaceous tannery solid waste and production of a novel value added product – Metalloprotease. Bioresource Technology, 2016, 217, 150-156.	4.8	21
76	Influence of microbial diversity and plant growth hormones in compost and vermicompost from fermented tannery waste. Bioresource Technology, 2016, 217, 200-204.	4.8	92
77	Reducing nitrogen loss and salinity during †struvite' food waste composting by zeolite amendment. Bioresource Technology, 2016, 200, 838-844.	4.8	347
78	Influence of ferrous ions on extracellular polymeric substances content and sludge dewaterability during bioleaching. Bioresource Technology, 2015, 179, 78-83.	4.8	60
79	Ultrasonic and Thermal Pretreatments on Anaerobic Digestion of Petrochemical Sludge: Dewaterability and Degradation of PAHs. PLoS ONE, 2015, 10, e0136162.	1.1	16
80	Flocculation and dewaterability of chemically enhanced primary treatment sludge by bioaugmentation with filamentous fungi. Bioresource Technology, 2014, 168, 198-203.	4.8	41
81	A novel way to utilize hydrogen and carbon dioxide in acidogenic reactor through homoacetogenesis. Bioresource Technology, 2014, 159, 249-257.	4.8	30
82	Application of rumen microbes to enhance food waste hydrolysis in acidogenic leach-bed reactors. Bioresource Technology, 2014, 168, 64-71.	4.8	41
83	Optimization of micro-aeration intensity in acidogenic reactor of a two-phase anaerobic digester treating food waste. Waste Management, 2014, 34, 363-369.	3.7	117
84	Development of correction factors for landfill gas emission model suiting Indian condition to predict methane emission from landfills. Bioresource Technology, 2014, 168, 97-99.	4.8	16
85	Enhanced dewaterability of anaerobically digested sewage sludge using Acidithiobacillus ferrooxidans culture as sludge conditioner. Bioresource Technology, 2014, 169, 374-379.	4.8	39
86	Responses of microbial community and acidogenic intermediates to different water regimes in a hybrid solid anaerobic digestion system treating food waste. Bioresource Technology, 2014, 168, 49-58.	4.8	36
87	Evaluation of thermophilic fungal consortium for organic municipal solid waste composting. Bioresource Technology, 2014, 168, 214-221.	4.8	268
88	Microbial community distribution and extracellular enzyme activities in leach bed reactor treating food waste: Effect of different leachate recirculation practices. Bioresource Technology, 2014, 168, 41-48.	4.8	53
89	Evaluation of humic substances during co-composting of food waste, sawdust and Chinese medicinal herbal residues. Bioresource Technology, 2014, 168, 229-234.	4.8	257
90	Nitrogen conservation and acidity control during food wastes composting through struvite formation. Bioresource Technology, 2013, 147, 17-22.	4.8	142

JONATHAN WOON CHUNG

#	Article	IF	CITATIONS
91	Degradation of tetracycline and sulfadiazine during continuous thermophilic composting of pig manure and sawdust. Environmental Technology (United Kingdom), 2013, 34, 2433-2441.	1.2	51
92	Fate of heavy metals and major nutrients in a sludge-soil-plant-leachate system during the sludge phyto-treatment process. Environmental Technology (United Kingdom), 2013, 34, 2221-2229.	1.2	14
93	Influence of different mixing ratios on in-vessel co-composting of sewage sludge with horse stable straw bedding waste: maturity and process evaluation. Waste Management and Research, 2011, 29, 1164-1170.	2.2	18
94	Growth and Elemental Accumulation of Plants Grown in Acidic Soil Amended With Coal Fly Ash–Sewage Sludge Co-compost. Archives of Environmental Contamination and Toxicology, 2009, 57, 515-523.	2.1	16
95	Reduction of indicator and pathogenic microorganisms in pig manure through fly ash and lime addition during alkaline stabilization. Journal of Hazardous Materials, 2009, 169, 882-889.	6.5	45
96	PHYTOCHELATIN SYSTHESIS AND CADMIUM UPTAKE OF <i>BRASSICA NAPUS</i> . Environmental Technology (United Kingdom), 2008, 29, 765-773.	1.2	44
97	Enhanced heavy metal bioleaching efficiencies from anaerobically digested sewage sludge with coinoculation of Acidithiobacillus ferrooxidans ANYL-1 and Blastoschizomyces capitatus Y5. Water Science and Technology, 2004, 50, 83-89.	1.2	17
98	Alkaline biosolids and EDTA for phytoremediation of an acidic loamy soil spiked with cadmium. Science of the Total Environment, 2004, 324, 235-246.	3.9	13
99	Effect of Surfactants on Solubilization and Degradation of Phenanthrene under Thermophilic Conditions. Journal of Environmental Quality, 2004, 33, 2015-2025.	1.0	94
100	Effect of organic waste amendments on degradation of PAHs in soil using thermophillic composting. Environmental Technology (United Kingdom), 2003, 24, 23-30.	1.2	12
101	Fractionation and characterization of sludge bacterial extracellular polymers by FT-IR, 13C-NMR, 1H-NMR. Water Science and Technology, 2001, 44, 71-78.	1.2	9
102	Effect of Dissolved Organic Matter from Sludge and Sludge Compost on Soil Copper Sorption. Journal of Environmental Quality, 2001, 30, 878-883.	1.0	137
103	Acid-forming capacity of lead–zinc mine tailings and its implications for mine rehabilitation. Environmental Geochemistry and Health, 1998, 20, 149-155.	1.8	69