Tiina Nypelö

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7256556/publications.pdf Version: 2024-02-01

Τιινά Νναεί Δη

#	Article	IF	CITATIONS
1	Magnetic cellulose: does extending cellulose versatility with magnetic functionality facilitate its use in devices?. Journal of Materials Chemistry C, 2022, 10, 805-818.	2.7	8
2	Phase transitions of cellulose nanocrystal suspensions from nonlinear oscillatory shear. Cellulose, 2022, 29, 3655-3673.	2.4	10
3	Calcium Ion-Induced Structural Changes in Carboxymethylcellulose Solutions and Their Effects on Adsorption on Cellulose Surfaces. Biomacromolecules, 2022, 23, 47-56.	2.6	8
4	Modification of xylan via an oxidation–reduction reaction. Carbohydrate Polymers, 2022, 292, 119660.	5.1	16
5	Xylan-cellulose thin film platform for assessing xylanase activity. Carbohydrate Polymers, 2022, 294, 119737.	5.1	6
6	Review: Periodate oxidation of wood polysaccharides—Modulation of hierarchies. Carbohydrate Polymers, 2021, 252, 117105.	5.1	69
7	Effect of plasticizers and polymer blends for processing softwood kraft lignin as carbon fiber precursors. Cellulose, 2021, 28, 1039-1053.	2.4	7
8	How cellulose nanofibrils and cellulose microparticles impact paper strength—A visualization approach. Carbohydrate Polymers, 2021, 254, 117406.	5.1	12
9	Chemical Engineering Laboratory Projects in Student Teams in Real Life and Transformed Online: Viscose Fiber Spinning and Characterization. Journal of Chemical Education, 2021, 98, 1776-1782.	1.1	3
10	Cellulose Nanocrystal Liquid Crystal Phases: Progress and Challenges in Characterization Using Rheology Coupled to Optics, Scattering, and Spectroscopy. ACS Nano, 2021, 15, 7931-7945.	7.3	60
11	Oxidized xylan additive for nanocellulose films – A swelling modifier. International Journal of Biological Macromolecules, 2021, 180, 753-759.	3.6	9
12	Self-Standing, Robust Membranes Made of Cellulose Nanocrystals (CNCs) and a Protic Ionic Liquid: Toward Sustainable Electrolytes for Fuel Cells. ACS Applied Energy Materials, 2021, 4, 6474-6485.	2.5	12
13	The effect of sulfate half-ester groups on cellulose nanocrystal periodate oxidation. Cellulose, 2021, 28, 9633-9644.	2.4	15
14	Thixotropy of cellulose nanocrystal suspensions. Journal of Rheology, 2021, 65, 1035-1052.	1.3	28
15	Fundamental aspects of the non-covalent modification of cellulose via polymer adsorption. Advances in Colloid and Interface Science, 2021, 298, 102529.	7.0	24
16	Fat tissue equivalent phantoms for microwave applications by reinforcing gelatin with nanocellulose. Biomedical Physics and Engineering Express, 2021, 7, 065025.	0.6	3
17	Current Opportunities and Challenges in Biopolymer Thin Film Analysis—Determination of Film Thickness. Frontiers in Chemical Engineering, 2021, 3, .	1.3	3
18	N2O–Assisted Siphon Foaming of Modified Galactoglucomannans With Cellulose Nanofibers. Frontiers in Chemical Engineering, 2021, 3, .	1.3	0

Tiina Nypelö

#	Article	IF	CITATIONS
19	Unexpected microphase transitions in flow towards nematic order of cellulose nanocrystals. Cellulose, 2020, 27, 2003-2014.	2.4	21
20	2D Assignment and quantitative analysis of cellulose and oxidized celluloses using solution-state NMR spectroscopy. Cellulose, 2020, 27, 7929-7953.	2.4	34
21	The Exo-Polysaccharide Component of Extracellular Matrix is Essential for the Viscoelastic Properties of Bacillus subtilis Biofilms. International Journal of Molecular Sciences, 2020, 21, 6755.	1.8	21
22	Differences in surface chemistry of regenerated lignocellulose fibers determined by chemically sensitive scanning probe microscopy. International Journal of Biological Macromolecules, 2020, 165, 2520-2527.	3.6	8
23	Lignocellulosics and Their Use in Functional Materials and Nanotechnology. , 2020, , 1-16.		0
24	Design of Friction, Morphology, Wetting, and Protein Affinity by Cellulose Blend Thin Film Composition. Frontiers in Chemistry, 2019, 7, 239.	1.8	6
25	Editorial: Biopolymer Thin Films and Coatings. Frontiers in Chemistry, 2019, 7, 736.	1.8	1
26	Self-Standing Nanocellulose Janus-Type Films with Aldehyde and Carboxyl Functionalities. Biomacromolecules, 2018, 19, 973-979.	2.6	30
27	Conversion of wood-biopolymers into macrofibers with tunable surface energy via dry-jet wet-spinning. Cellulose, 2018, 25, 5297-5307.	2.4	15
28	Adhesion properties of regenerated lignocellulosic fibres towards poly(lactic acid) microspheres assessed by colloidal probe technique. Journal of Colloid and Interface Science, 2018, 532, 819-829.	5.0	9
29	Submicron hierarchy of cellulose nanofibril films with etherified hemicelluloses. Carbohydrate Polymers, 2017, 177, 126-134.	5.1	13
30	Etherification of Wood-Based Hemicelluloses for Interfacial Activity. Biomacromolecules, 2016, 17, 1894-1901.	2.6	41
31	Synthesis and Characterization of Periodate-Oxidized Polysaccharides: Dialdehyde Xylan (DAX). Biomacromolecules, 2016, 17, 2972-2980.	2.6	87
32	Double emulsions for the compatibilization of hydrophilic nanocellulose with non-polar polymers and validation in the synthesis of composite fibers. Soft Matter, 2016, 12, 2721-2728.	1.2	25
33	Synthesis of redispersible spherical cellulose II nanoparticles decorated with carboxylate groups. Green Chemistry, 2016, 18, 1465-1468.	4.6	46
34	Nanocellulose properties and applications in colloids and interfaces. Current Opinion in Colloid and Interface Science, 2014, 19, 383-396.	3.4	501
35	Microbeads and Hollow Microcapsules Obtained by Self-Assembly of Pickering Magneto-Responsive Cellulose Nanocrystals. ACS Applied Materials & Interfaces, 2014, 6, 16851-16858.	4.0	57
36	Magneto-responsive hybrid materials based on cellulose nanocrystals. Cellulose, 2014, 21, 2557-2566.	2.4	61

Tiina Nypelö

#	Article	IF	CITATIONS
37	Cellulose Nanofibrils. Journal of Renewable Materials, 2013, 1, 195-211.	1.1	152
38	Interactions between inorganic nanoparticles and cellulose nanofibrils. Cellulose, 2012, 19, 779-792.	2.4	34
39	Tailoring Surface Properties of Paper Using Nanosized Precipitated Calcium Carbonate Particles. ACS Applied Materials & Interfaces, 2011, 3, 3725-3731.	4.0	20