
## Xiangchun Xuan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7256535/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Robust phosphoproteome enrichment using monodisperse microsphere–based immobilized titanium<br>(IV) ion affinity chromatography. Nature Protocols, 2013, 8, 461-480.                     | 5.5 | 340       |
| 2  | Particle focusing in microfluidic devices. Microfluidics and Nanofluidics, 2010, 9, 1-16.                                                                                                | 1.0 | 318       |
| 3  | Particle manipulations in non-Newtonian microfluidics: A review. Journal of Colloid and Interface<br>Science, 2017, 500, 182-201.                                                        | 5.0 | 214       |
| 4  | Continuous separation of microparticles by size with Direct current-dielectrophoresis.<br>Electrophoresis, 2006, 27, 694-702.                                                            | 1.3 | 181       |
| 5  | Electroosmotic flow with Joule heating effects. Lab on A Chip, 2004, 4, 230.                                                                                                             | 3.1 | 157       |
| 6  | Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. Nature Chemical<br>Biology, 2016, 12, 959-966.                                                           | 3.9 | 141       |
| 7  | Joule heating in electrokinetic flow. Electrophoresis, 2008, 29, 33-43.                                                                                                                  | 1.3 | 129       |
| 8  | Dielectrophoretic focusing of particles in a microchannel constriction using DCâ€biased AC flectric fields. Electrophoresis, 2009, 30, 2668-2675.                                        | 1.3 | 112       |
| 9  | Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis.<br>Biomicrofluidics, 2012, 6, 34102.                                                       | 1.2 | 111       |
| 10 | Electrokinetic energy conversion in slip nanochannels. Journal of Power Sources, 2008, 179, 297-300.                                                                                     | 4.0 | 110       |
| 11 | Magnetic separation of particles and cells in ferrofluid flow through a straight microchannel using two offset magnets. Journal of Magnetism and Magnetic Materials, 2013, 346, 118-123. | 1.0 | 109       |
| 12 | Effects of dc-dielectrophoretic force on particle trajectories in microchannels. Journal of Applied<br>Physics, 2006, 99, 064702.                                                        | 1.1 | 104       |
| 13 | Thermal end effects on electroosmotic flow in a capillary. International Journal of Heat and Mass<br>Transfer, 2004, 47, 3145-3157.                                                      | 2.5 | 101       |
| 14 | Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge. Journal of Colloid and Interface Science, 2005, 289, 291-303.                    | 5.0 | 101       |
| 15 | DC-dielectrophoretic separation of microparticles using an oil droplet obstacle. Lab on A Chip, 2006,<br>6, 274-279.                                                                     | 3.1 | 97        |
| 16 | Continuous Microfluidic Particle Separation via Elasto-Inertial Pinched Flow Fractionation.<br>Analytical Chemistry, 2015, 87, 6389-6396.                                                | 3.2 | 95        |
| 17 | DC dielectrophoretic focusing of particles in a serpentine microchannel. Microfluidics and Nanofluidics, 2009, 7, 751-756.                                                               | 1.0 | 94        |
| 18 | Distinguishing the viability of a single yeast cell with an ultra-sensitive radio frequency sensor. Lab<br>on A Chip, 2010, 10, 553.                                                     | 3.1 | 94        |

| #  | Article                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Recent advances in direct current electrokinetic manipulation of particles for microfluidic applications. Electrophoresis, 2019, 40, 2484-2513.                                                  | 1.3 | 88        |
| 20 | Joule heating effects on electroosmotic flow in insulatorâ€based dielectrophoresis. Electrophoresis, 2011, 32, 2274-2281.                                                                        | 1.3 | 86        |
| 21 | Thermodynamic analysis of electrokinetic energy conversion. Journal of Power Sources, 2006, 156, 677-684.                                                                                        | 4.0 | 82        |
| 22 | Elasto-Inertial Pinched Flow Fractionation for Continuous Shape-Based Particle Separation.<br>Analytical Chemistry, 2015, 87, 11523-11530.                                                       | 3.2 | 76        |
| 23 | DC Electrokinetic Particle Transport in an L-Shaped Microchannel. Langmuir, 2010, 26, 2937-2944.                                                                                                 | 1.6 | 74        |
| 24 | Wall-induced lateral migration in particle electrophoresis through a rectangular microchannel.<br>Journal of Colloid and Interface Science, 2010, 347, 142-146.                                  | 5.0 | 74        |
| 25 | Particle electrophoresis and dielectrophoresis in curved microchannels. Journal of Colloid and<br>Interface Science, 2009, 340, 285-290.                                                         | 5.0 | 73        |
| 26 | Continuous dielectrophoretic separation of particles in a spiral microchannel. Electrophoresis, 2010, 31, 1382-1388.                                                                             | 1.3 | 72        |
| 27 | Experimental characterization of the temperature dependence of zeta potential and its effect on electroosmotic flow velocity in microchannels. Microfluidics and Nanofluidics, 2006, 2, 493-499. | 1.0 | 70        |
| 28 | Effects of Stern layer conductance on electrokinetic energy conversion in nanofluidic channels.<br>Electrophoresis, 2008, 29, 1125-1130.                                                         | 1.3 | 69        |
| 29 | Electrokinetic focusing and filtration of cells in a serpentine microchannel. Biomicrofluidics, 2009, 3, 44109.                                                                                  | 1.2 | 69        |
| 30 | Joule heating effects on peak broadening in capillary zone electrophoresis. Journal of<br>Micromechanics and Microengineering, 2004, 14, 1171-1180.                                              | 1.5 | 68        |
| 31 | Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis. Journal of Chromatography A, 2005, 1064, 227-237.                                       | 1.8 | 67        |
| 32 | Transient electrophoretic motion of a charged particle through a converging–diverging<br>microchannel: Effect of direct currentâ€dielectrophoretic force. Electrophoresis, 2009, 30, 2499-2506.  | 1.3 | 66        |
| 33 | Analysis of electrokinetic flow in microfluidic networks. Journal of Micromechanics and Microengineering, 2004, 14, 290-298.                                                                     | 1.5 | 63        |
| 34 | Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels. Electrophoresis, 2005, 26, 3552-3560.                                       | 1.3 | 63        |
| 35 | Diamagnetic particle focusing using ferromicrofluidics with a single magnet. Microfluidics and Nanofluidics, 2012, 13, 637-643.                                                                  | 1.0 | 62        |
| 36 | Enhanced separation of magnetic and diamagnetic particles in a dilute ferrofluid. Applied Physics<br>Letters, 2013, 102, .                                                                       | 1.5 | 60        |

| #  | Article                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Viscoelastic Separation of Particles by Size in Straight Rectangular Microchannels: A Parametric<br>Study for a Refined Understanding. Analytical Chemistry, 2016, 88, 12303-12309.           | 3.2 | 60        |
| 38 | Continuous sheath-free separation of particles by shape in viscoelastic fluids. Applied Physics Letters, 2015, 107, .                                                                         | 1.5 | 58        |
| 39 | Wall effects on electrophoretic motion of spherical polystyrene particles in a rectangular poly(dimethylsiloxane) microchannel. Journal of Colloid and Interface Science, 2006, 296, 743-748. | 5.0 | 56        |
| 40 | Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis. Microfluidics and Nanofluidics, 2011, 11, 743-752.                        | 1.0 | 55        |
| 41 | Curvature-induced dielectrophoresis for continuous separation of particles by charge in spiral microchannels. Biomicrofluidics, 2011, 5, 024111.                                              | 1.2 | 55        |
| 42 | Three-dimensional diamagnetic particle deflection in ferrofluid microchannel flows.<br>Biomicrofluidics, 2011, 5, 34110-3411013.                                                              | 1.2 | 55        |
| 43 | On-chip manipulation of nonmagnetic particles in paramagnetic solutions using embedded permanent magnets. Microfluidics and Nanofluidics, 2012, 12, 65-73.                                    | 1.0 | 55        |
| 44 | Inertia-Enhanced Pinched Flow Fractionation. Analytical Chemistry, 2015, 87, 4560-4565.                                                                                                       | 3.2 | 51        |
| 45 | Eccentric electrophoretic motion of a sphere in circular cylindrical microchannels. Microfluidics and Nanofluidics, 2005, 1, 234-241.                                                         | 1.0 | 50        |
| 46 | Magnetic concentration of particles and cells in ferrofluid flow through a straight microchannel using attracting magnets. Microfluidics and Nanofluidics, 2013, 15, 49-55.                   | 1.0 | 48        |
| 47 | Band-broadening in capillary zone electrophoresis with axial temperature gradients. Electrophoresis, 2005, 26, 166-175.                                                                       | 1.3 | 46        |
| 48 | Accelerated Particle Electrophoretic Motion and Separation in Convergingâ^'Diverging<br>Microchannels. Analytical Chemistry, 2005, 77, 4323-4328.                                             | 3.2 | 46        |
| 49 | Continuous particle separation in a serpentine microchannel via negative and positive dielectrophoretic focusing. Journal of Micromechanics and Microengineering, 2010, 20, 065011.           | 1.5 | 46        |
| 50 | Three-dimensional magnetic focusing of particles and cells in ferrofluid flow through a straight microchannel. Journal of Micromechanics and Microengineering, 2012, 22, 105018.              | 1.5 | 45        |
| 51 | Numerical modeling of <scp>J</scp> oule heating effects in insulatorâ€based dielectrophoresis<br>microdevices. Electrophoresis, 2013, 34, 674-683.                                            | 1.3 | 45        |
| 52 | Three-dimensional electrokinetic particle focusing in a rectangular microchannel. Journal of Colloid and Interface Science, 2010, 350, 377-379.                                               | 5.0 | 41        |
| 53 | Diamagnetic particle separation by shape in ferrofluids. Applied Physics Letters, 2016, 109, .                                                                                                | 1.5 | 41        |
| 54 | Joule heating effects on electroosmotic entry flow. Electrophoresis, 2017, 38, 572-579.                                                                                                       | 1.3 | 41        |

| #  | Article                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Continuous sheath-free magnetic separation of particles in a U-shaped microchannel.<br>Biomicrofluidics, 2012, 6, 44106.                                                      | 1.2 | 40        |
| 56 | Simultaneous Separation and Washing of Nonmagnetic Particles in an Inertial Ferrofluid/Water Coflow. Analytical Chemistry, 2017, 89, 6915-6920.                               | 3.2 | 40        |
| 57 | Electroosmotic flow of nonâ€Newtonian fluids in a constriction microchannel. Electrophoresis, 2019,<br>40, 1387-1394.                                                         | 1.3 | 40        |
| 58 | Electrokinetic flow in a free surface-guided microchannel. Journal of Applied Physics, 2006, 99, 054905.                                                                      | 1.1 | 39        |
| 59 | Near-wall electrophoretic motion of spherical particles in cylindrical capillaries. Journal of Colloid and Interface Science, 2005, 289, 286-290.                             | 5.0 | 38        |
| 60 | Integrated electrical concentration and lysis of cells in a microfluidic chip. Biomicrofluidics, 2010, 4, 044101.                                                             | 1.2 | 38        |
| 61 | Recent Advances in Continuous-Flow Particle Manipulations Using Magnetic Fluids. Micromachines, 2019, 10, 744.                                                                | 1.4 | 38        |
| 62 | Joule heating effects on reservoirâ€based dielectrophoresis. Electrophoresis, 2014, 35, 721-727.                                                                              | 1.3 | 36        |
| 63 | Solute separation in nanofluidic channels: Pressure-driven or electric field-driven?. Electrophoresis, 2007, 28, 627-634.                                                     | 1.3 | 35        |
| 64 | Induced charge effects on electrokinetic entry flow. Physics of Fluids, 2017, 29, .                                                                                           | 1.6 | 35        |
| 65 | Negative dielectrophoresisâ€based particle separation by size in a serpentine microchannel.<br>Electrophoresis, 2011, 32, 527-531.                                            | 1.3 | 34        |
| 66 | Microfluidic electrical sorting of particles based on shape in a spiral microchannel. Biomicrofluidics, 2014, 8, 014101.                                                      | 1.2 | 34        |
| 67 | An unexpected particle oscillation for electrophoresis in viscoelastic fluids through a microchannel constriction. Biomicrofluidics, 2014, 8, 021802.                         | 1.2 | 33        |
| 68 | Electrokinetic preconcentration of particles and cells in microfluidic reservoirs. Analyst, The, 2015, 140, 2869-2875.                                                        | 1.7 | 33        |
| 69 | Thermally induced velocity gradients in electroosmotic microchannel flows: the cooling influence of optical infrastructure. Experiments in Fluids, 2004, 37, 872-882.         | 1.1 | 32        |
| 70 | Simultaneous diamagnetic and magnetic particle trapping in ferrofluid microflows via a single permanent magnet. Biomicrofluidics, 2015, 9, 044102.                            | 1.2 | 32        |
| 71 | Electrothermal enrichment of submicron particles in an insulatorâ€based dielectrophoretic<br>microdevice. Electrophoresis, 2018, 39, 887-896.                                 | 1.3 | 31        |
| 72 | Tunable, Sheathless Focusing of Diamagnetic Particles in Ferrofluid Microflows with a Single Set of<br>Overhead Permanent Magnets. Analytical Chemistry, 2018, 90, 8600-8606. | 3.2 | 30        |

| #  | Article                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Reservoirâ€based dielectrophoresis for microfluidic particle separation by charge. Electrophoresis, 2013, 34, 961-968.                                                      | 1.3 | 29        |
| 74 | Ion separation in nanofluidics. Electrophoresis, 2008, 29, 3737-3743.                                                                                                       | 1.3 | 28        |
| 75 | Exploiting magnetic asymmetry to concentrate diamagnetic particles in ferrofluid microflows.<br>Journal of Applied Physics, 2014, 115, 044907.                              | 1.1 | 28        |
| 76 | Electrophoretic slip-tuned particle migration in microchannel viscoelastic fluid flows. Physical Review Fluids, 2018, 3, .                                                  | 1.0 | 28        |
| 77 | Electrokinetic transport of charged solutes in micro- and nanochannels: The influence of transverse electromigration. Electrophoresis, 2006, 27, 5020-5031.                 | 1.3 | 26        |
| 78 | Review of nonlinear electrokinetic flows in insulatorâ€based dielectrophoresis: From induced charge<br>to Joule heating effects. Electrophoresis, 2022, 43, 167-189.        | 1.3 | 26        |
| 79 | Fluid rheological effects on particle migration in a straight rectangular microchannel. Microfluidics and Nanofluidics, 2018, 22, 1.                                        | 1.0 | 25        |
| 80 | Exploiting the Wall-Induced Non-inertial Lift in Electrokinetic Flow for a Continuous Particle<br>Separation by Size. Langmuir, 2015, 31, 620-627.                          | 1.6 | 24        |
| 81 | Viscoelastic effects on electrokinetic particle focusing in a constricted microchannel.<br>Biomicrofluidics, 2015, 9, 014108.                                               | 1.2 | 24        |
| 82 | Three-Dimensional Reservoir-Based Dielectrophoresis (rDEP) for Enhanced Particle Enrichment.<br>Micromachines, 2018, 9, 123.                                                | 1.4 | 24        |
| 83 | Electroosmotic flow in microchannels with prismatic elements. Microfluidics and Nanofluidics, 2007, 3, 151-160.                                                             | 1.0 | 23        |
| 84 | Fluid Rheological Effects on the Flow of Polymer Solutions in a Contraction–Expansion<br>Microchannel. Micromachines, 2020, 11, 278.                                        | 1.4 | 23        |
| 85 | Joule heating effects on electrokinetic focusing and trapping of particles in constriction microchannels. Journal of Micromechanics and Microengineering, 2012, 22, 075011. | 1.5 | 22        |
| 86 | Inertially focused diamagnetic particle separation in ferrofluids. Microfluidics and Nanofluidics, 2017, 21, 1.                                                             | 1.0 | 22        |
| 87 | Joule heating effects on separation efficiency in capillary zone electrophoresis with an initial voltage ramp. Electrophoresis, 2006, 27, 3171-3180.                        | 1.3 | 20        |
| 88 | Hydrodynamic dispersion of neutral solutes in nanochannels: the effect of streaming potential.<br>Microfluidics and Nanofluidics, 2007, 3, 723-728.                         | 1.0 | 20        |
| 89 | Electrokinetic particle entry into microchannels. Electrophoresis, 2012, 33, 916-922.                                                                                       | 1.3 | 20        |
| 90 | Electric field-induced instabilities in ferrofluid microflows. Microfluidics and Nanofluidics, 2015, 19, 43-52.                                                             | 1.0 | 20        |

6

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Yeast cell fractionation by morphology in dilute ferrofluids. Biomicrofluidics, 2017, 11, 064102.                                                                                     | 1.2 | 20        |
| 92  | AC Insulator-Based Dielectrophoretic Focusing of Particles and Cells in an "Infinite―Microchannel.<br>Analytical Chemistry, 2021, 93, 5947-5953.                                      | 3.2 | 20        |
| 93  | Electrokinetic instability in microchannel ferrofluid/water co-flows. Scientific Reports, 2017, 7, 46510.                                                                             | 1.6 | 19        |
| 94  | Vortex trapping and separation of particles in shear thinning fluids. Applied Physics Letters, 2020, 116, .                                                                           | 1.5 | 19        |
| 95  | Effects of liquid conductivity differences on multi-component sample injection, pumping and stacking in microfluidic chips. Lab on A Chip, 2003, 3, 173.                              | 3.1 | 18        |
| 96  | Multiâ€Functional Particle Detection with Embedded Optical Fibers in a Poly(dimethylsiloxane) Chip.<br>Instrumentation Science and Technology, 2005, 33, 597-607.                     | 0.9 | 18        |
| 97  | Streaming potential and electroviscous effect in heterogeneous microchannels. Microfluidics and Nanofluidics, 2008, 4, 457-462.                                                       | 1.0 | 16        |
| 98  | Electrokinetic instability in microchannel viscoelastic fluid flows with conductivity gradients.<br>Physics of Fluids, 2019, 31, .                                                    | 1.6 | 16        |
| 99  | Sheathless electrokinetic particle separation in a bifurcating microchannel. Biomicrofluidics, 2016, 10, 054104.                                                                      | 1.2 | 15        |
| 100 | Surface-conduction enhanced dielectrophoretic-like particle migration in electric-field driven fluid flow through a straight rectangular microchannel. Physics of Fluids, 2017, 29, . | 1.6 | 15        |
| 101 | Experimental study of particle electrophoresis in shear-thinning fluids. Physics of Fluids, 2019, 31, .                                                                               | 1.6 | 15        |
| 102 | Passive Dielectrophoretic Focusing of Particles and Cells in Ratchet Microchannels. Micromachines, 2020, 11, 451.                                                                     | 1.4 | 15        |
| 103 | Polymer effects on viscoelastic fluid flows in a planar constriction microchannel. Journal of Non-Newtonian Fluid Mechanics, 2021, 290, 104508.                                       | 1.0 | 15        |
| 104 | Insulatorâ€based dielectrophoretic focusing and trapping of particles in nonâ€Newtonian fluids.<br>Electrophoresis, 2021, 42, 2154-2161.                                              | 1.3 | 15        |
| 105 | The motion of rigid particles in the Poiseuille flow of pseudoplastic fluids through straight rectangular microchannels. Microfluidics and Nanofluidics, 2019, 23, 1.                 | 1.0 | 14        |
| 106 | Elastic instabilities in the electroosmotic flow of nonâ€Newtonian fluids through Tâ€shaped<br>microchannels. Electrophoresis, 2020, 41, 588-597.                                     | 1.3 | 14        |
| 107 | Electrokinetic particle separation in a single-spiral microchannel. Journal of Micromechanics and Microengineering, 2014, 24, 115018.                                                 | 1.5 | 13        |
| 108 | Continuous-flow sheathless diamagnetic particle separation in ferrofluids. Journal of Magnetism and<br>Magnetic Materials, 2016, 412, 114-122.                                        | 1.0 | 13        |

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Continuous sheathâ€free separation of drugâ€treated human fungal pathogen Cryptococcus neoformans<br>by morphology in biocompatible polymer solutions. Electrophoresis, 2018, 39, 2362-2369.   | 1.3 | 13        |
| 110 | Specific Enrichment of Peptides with N-Terminal Serine/Threonine by a Solid-Phase Capture-Release Approach for Efficient Proteomics Analysis. Analytical Chemistry, 2015, 87, 11353-11360.     | 3.2 | 12        |
| 111 | Particle separation in xanthan gum solutions. Microfluidics and Nanofluidics, 2019, 23, 1.                                                                                                     | 1.0 | 12        |
| 112 | Electrokinetically enhanced cross-stream particle migration in viscoelastic flows. Journal of Fluid<br>Mechanics, 2020, 898, .                                                                 | 1.4 | 12        |
| 113 | Flow rate-modified streaming effects in heterogeneous microchannels. Microfluidics and Nanofluidics, 2008, 5, 733-740.                                                                         | 1.0 | 11        |
| 114 | Joule heating effects on electrokinetic flows with conductivity gradients. Electrophoresis, 2021, 42, 967-974.                                                                                 | 1.3 | 11        |
| 115 | Flow of Non-Newtonian Fluids in a Single-Cavity Microchannel. Micromachines, 2021, 12, 836.                                                                                                    | 1.4 | 11        |
| 116 | Chargeâ€based separation of particles and cells with similar sizes via the wallâ€induced electrical lift.<br>Electrophoresis, 2017, 38, 320-326.                                               | 1.3 | 10        |
| 117 | Joule heatingâ€enabled electrothermal enrichment of nanoparticles in insulatorâ€based<br>dielectrophoretic microdevices. Electrophoresis, 2021, 42, 626-634.                                   | 1.3 | 9         |
| 118 | Constriction length dependent instabilities in the microfluidic entry flow of polymer solutions. Soft<br>Matter, 2021, 17, 9198-9209.                                                          | 1.2 | 9         |
| 119 | Revisit of wallâ€induced lateral migration in particle electrophoresis through a straight rectangular<br>microchannel: Effects of particle zeta potential. Electrophoresis, 2019, 40, 955-960. | 1.3 | 8         |
| 120 | A depth-averaged model for Newtonian fluid flows in shallow microchannels. Physics of Fluids, 2021, 33, .                                                                                      | 1.6 | 8         |
| 121 | Solute transport and separation in nanochannel chromatography. Journal of Chromatography A, 2008, 1187, 289-292.                                                                               | 1.8 | 7         |
| 122 | Enhanced Throughput for Electrokinetic Manipulation of Particles and Cells in a Stacked Microfluidic Device. Micromachines, 2016, 7, 156.                                                      | 1.4 | 6         |
| 123 | Electrokinetic instabilities in co-flowing ferrofluid and buffer solutions with matched electric conductivities. Microfluidics and Nanofluidics, 2018, 22, 1.                                  | 1.0 | 6         |
| 124 | Analytical Guidelines for Designing Curvature-Induced Dielectrophoretic Particle Manipulation Systems. Micromachines, 2020, 11, 707.                                                           | 1.4 | 6         |
| 125 | Surfactant effects on microfluidic extensional flow of water and polymer solutions. Physics of Fluids, 2022, 34, .                                                                             | 1.6 | 4         |
| 126 | Revisit of Joule heating in CE: The contribution of surface conductance. Electrophoresis, 2007, 28, 2971-2974.                                                                                 | 1.3 | 3         |

| #   | Article                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Interplay of induced charge electroosmosis and electrothermal flow in insulator-based dielectrophoresis. Physical Review Fluids, 2021, 6, . | 1.0 | 3         |
| 128 | Fluid rheological effects on streaming dielectrophoresis in a postâ€array microchannel.<br>Electrophoresis, 2022, 43, 717-723.              | 1.3 | 3         |
| 129 | Editorial for the Special Issue on Micro/Nano-Chip Electrokinetics. Micromachines, 2017, 8, 145.                                            | 1.4 | 2         |
| 130 | Editorial for the Special Issue on Micro/Nano-Chip Electrokinetics, Volume III. Micromachines, 2020, 11, 482.                               | 1.4 | 1         |
| 131 | Reservoir-Based Dielectrophoresis. , 2015, , 2922-2928.                                                                                     |     | 1         |
| 132 | Editorial for the Special Issue on Micro/Nano-Chip Electrokinetics, Volume II. Micromachines, 2018, 9, 383.                                 | 1.4 | 0         |
| 133 | A chemoenzymatic approach enables the siteâ€specific conjugation of recombinant proteins.<br>Electrophoresis, 2019, 40, 2125-2128.          | 1.3 | 0         |
| 134 | Reservoir-Based Dielectrophoresis. , 2013, , 1-7.                                                                                           |     | 0         |
| 135 | Joule Heating in Electrokinetic Flow: Theoretical Models. , 2013, , 1-14.                                                                   |     | 0         |
| 136 | 10.1063/1.4906798.1., 2015, , .                                                                                                             |     | 0         |